
Holding the Internet Accountable

David Andersen, Hari Balakrishnan, Nick Feamster,
Teemu Koponen, Daekyeong Moon, Scott Shenker

Abstract
Today’s IP network layer provides little to no protec-
tion against misconfiguration or malice. Despite some
progress in improving the robustness and security of the
IP layer, misconfigurations and attacks still occur fre-
quently. We show how a network layer that provides ac-
countability, i.e., the ability to associate each action with
the responsible entity, provides a firm foundation for de-
fenses against misconfiguration and malice. We present
the design of a network layer that incorporates account-
ability called AIP (Accountable Internet Protocol) and
show how its features—notably, its use of self-certifying
addresses—can improve both source accountability (the
ability to trace actions to a particular end host and stop that
host from misbehaving) and control-plane accountability
(the ability to pinpoint and prevent attacks on routing).

1 Introduction
The Internet architecture is elegant and simple; it has been
a tremendous success. When judged from the perspec-
tive of security, however, the architecture has several se-
rious shortcomings. The IP layer, in particular, is rid-
dled with vulnerabilities. Denial-of-service (DoS) attacks
occur daily and are launched with impunity because at-
tackers are confident they will neither be identified nor
thwarted easily. Misconfigurations can cause massive In-
ternet outages (as in the infamous AS 7007 incident [4]
and similar occurrences in recent years [26]). Route hi-
jacking is used to send untraceable spam [23].

Our goal is to develop a network architecture to address
these IP layer vulnerabilities. Our work does not enter a
vacuum, as there is a profusion of network security so-
lutions addressing the set of problems discussed in this
paper. However, these solutions tend to be narrowly fo-
cused, and their union does not form a coherent architec-
ture. We can be fairly certain that if these solutions were
implemented and deployed, IP would be more secure. Un-
fortunately, it is also clear that IP would have lost much
of its simplicity, elegance, and coherence.

To achieve both practical security and architectural co-
herence, we need to develop a simple foundation upon
which security solutions can be easily built. In search-

ing for a unifying principle, we turn to daily experience.
In the real world, security relies on accountability.1 In
a just and secure society, one ought to be able to prove
that a guilty party did in fact commit a crime. Equally
importantly, framing an innocent party should be difficult.
Having such a framework for accountability, together with
suitable laws and punishment, is important to provide ad-
equate incentives for crime prevention.

We believe the same holds true for computer systems.
In order to identify, isolate, prevent, and possibly pun-
ish bad behavior (e.g., by not providing service to wrong-
doers), a computer system must have some notion of ac-
countability. Indeed, one of the reasons it has been so
hard to secure the Internet is that the IP architecture pro-
vides very little accountability. For instance, IP addresses
do not always map one-to-one to Internet end points be-
cause of NATs, firewalls, and proxies. More dangerously,
IP addresses are trivial to forge, so attempting to use IP
addresses to identify or ignore wrong-doers opens up an-
other attack vector.

This paper presents AIP (Accountable Internet Proto-
col), a network architecture that provides accountability
as a first-order principle and serves as a building block for
simple, elegant improvements to Internet security. AIP’s
cornerstone is self-certifying addressing. AIP addresses
are of the form AD:EID, where AD is the identifier for the
autonomous domain that the host belongs to, and EID is a
globally unique host identifier. Both address components
are derived from public keys held by the domain and host,
respectively. The structure of these addresses allows other
entities to verify the authenticity of routing messages and
the provenance of data packets.

AIP addresses enable protocols to (i) detect and prevent
spoofing or forgery of source addresses (source account-
ability); (ii) throttle certain forms of unwanted traffic us-
ing a simple “shut-off message”, taking advantage of the
source accountability property to ensure authenticity; and
(iii) detect misleading route advertisements (control-plane
accountability). AIP aims to add accountability with only
small changes (and minimum additional complexity) to
the network architecture; it therefore can, and should, co-

1. We focus on accountability in the sense that we wish to attribute
actions to the responsible party; we do not mean accounting, and have
no intention of providing facilities for resource allocation.

1



exist with mechanisms that provide other important fea-
tures (mobility, higher availability, etc.).

In the next section, we describe these two forms of ac-
countability. We then give an overview of the AIP archi-
tecture in Section 3. We discuss control plane accountabil-
ity and source accountability in Sections 4 and 5. In Sec-
tion 6 we discuss three design challenges raised by AIP:
scaling, traffic engineering, and key compromise.

2 Why Accountability?

AIP makes accountability a first-order design goal. By
doing so, it improves the security, trustworthiness, and ro-
bustness of both the IP layer and of the systems built atop
it. Accountability makes certain types of attacks either
more traceable or simply more difficult to mount. AIP pro-
vides two types of accountability: control-plane account-
ability and source accountability. For each, we briefly
discuss how the absence of accountability leads to inse-
curity and how its presence might provide a foundation
upon which robust security measures could be built.2

Control-plane accountability: If routers and ASes
were accountable for their routing messages, then their
peers would be able to more easily discover forgeries or
errors. Ultimately, securing a protocol like BGP (as in
S-BGP [14]) relies on ensuring that no entity can unde-
tectably forge routing messages, which is actually a state-
ment about accountability.

Securing routing is difficult in part because today’s IP
addressing structure does not securely bind addresses to
the networks that are allowed to announce them. S-BGP
provides mechanisms to do so, but we believe that such a
binding should be inherent to the network architecture.

Source accountability: Today’s Internet architecture
lacks source accountability: hosts can easily forge the
source IP address of data traffic, which makes attacks dif-
ficult to track and makes it nearly impossible for network
operators to filter traffic based on the source address—the
most logical identifier for doing so.

If sources were accountable, then any element in the
network that saw a packet could verify that packet’s ori-
gin. This property eliminates undetectable source ad-
dress forgery. As a result of preventing such forgery, de-
fenses against DoS could profile using source addresses,
routers could implement packet filters or rate limiters us-
ing source addresses as a robust handle, spam filters could
more easily blacklist on IP addresses, and intrusion detec-
tion and prevention systems could use source addresses as
a handle to their state without worrying about adversaries
forging source addresses and exhausting their state.3

In this paper, we do not address data-plane accountabil-
ity (i.e., ways to identify network elements that are not
forwarding packets appropriately). Several aspects of AIP,
however, do facilitate solutions to this problem. First, all
elements in the architecture have strong, verifiable identi-
ties that can serve as a basis for attestations about behavior.
Second, hosts’ globally unique identifiers (Section 3.2) fa-
cilitate avoiding data-plane failures through multihoming
or by continuing connections through different ADs or in-
terfaces. Finally, AIP’s self-certifying address structure
makes it possible to give cryptographic assurance to mech-
anisms that attribute packet loss, delay, or misrouting to a
network element; one logical candidate mechanism is AS-
level packet obituaries [1].

3 Accountable Internet Protocol
This section outlines AIP, starting with the structure and
function of AIP addresses. We then explain how mak-
ing AIP addresses self-certifying (i.e., derived from public
keys) infuses accountability into the network layer.

3.1 Basic Structure and Function
The Internet’s original addressing structure was a simple
two-level hierarchy. Each address had a network and a
host component, and routers inspected only the network
portion until the packet reached the destination network.
The network and host components were both implicitly
assumed to be flat: there was little correlation between
topological and numerical proximity. Unfortunately, ad-
dressing has become more complicated with the advent of
autonomous systems (used in BGP routing) and classless
routing (CIDR); these changes have made it hard to add
accountability to the existing infrastructure.

Address structure: AIP returns to simple two-level hi-
erarchical addresses. We assume that there are some num-
ber of independently administered networks (as is the case
today) which we call autonomous domains (ADs), and
that each possesses a unique identifier. We avoid the term
“AS” because we envision that current large ASes would
be broken up into several smaller ADs for traffic engineer-
ing (Section 6.2). Each host is assigned a unique end-
point identifier (EID). Analogous to the original Internet
addressing structure, the AIP address of a host currently
homed in some AD would have an address of the form

2. Accountability, as we have defined it, does not preclude anonymity
for end-to-end applications (such as anonymous email), which can be
provided using approaches such as onion routing and mix-nets.

3. The simplicity of profiling and filtering is in stark contrast to the
more radical architectural designs needed to deal with DoS in the pres-
ence of spoofing, such as [15, 11, 27, 32].

2



AD:EID.4 The EID is a globally unique endpoint identi-
fier, and it is part of the internetwork address (as in IPv6
CGA [2]).

Name lookup: The domain name system would include
an AIP-record, which would contain the AIP address(es)
for a hostname. A host might have multiple addresses if
it had direct upstream connectivity to multiple domains
ADi; the host would then have addresses ADi:EID in its
AIP-record for each domain. In addition, to allow even
more fine-grained control of traffic for the host, EIDs
could be augmented with interface bits that give each in-
terface a unique identifier: EIDif1, EIDif2, etc. Each of
these identifiers would appear in the host’s AIP-record.

Interdomain routing: In AIP, interdomain routing oc-
curs in much the same way that it does today (and can
benefit from improvements to BGP). Rather than involv-
ing IP prefixes, however, interdomain routing occurs en-
tirely at the AD granularity, so the only advertisements
will be for ADs themselves. Interior and border routers
in an AD maintain routing information on a per-AD basis
for destinations in other ADs; i.e., an AIP routing table
maps AD numbers to “next hop” locations but does not
maintain any information about EIDs in other ADs. Each
router also participates in an interior routing protocol (e.g.,
OSPF [20]) to maintain routing information to the EIDs
within the AD. Although AIP changes the granularity of
routing, it does not specify or mandate any particular inter-
or intra-domain routing protocol.

Packet forwarding: Packets contain the destination’s
AD:EID. Until the packet reaches the destination AD,
routers use only the destination AD to forward the packet.
Upon reaching the destination AD, routers forward the
packet using only its EID.

3.2 Self-Certifying Addresses
Eliminating structure in the AD and EID allows us to make
them self-certifying. The notion of a self-certifying name
is straightforward: the name of an object is the public key
(or, for convenience, the hash of the public key) that cor-
responds to that object. In AIP, the AD is the hash of the
public key of the domain, while the EID is the hash of the
public key of the corresponding host. Although higher
layers have used self-certifying naming (e.g., hosts, data,
and services) [18, 30], and HIP [19] uses such addresses
in a shim layer between the IP and transport layer, AIP
is the first architecture to our knowledge that uses fully
self-certifying addresses at the internetwork layer itself.

Security should not rely on extensive manual configu-
ration or globally trusted authorities. Thus, we believe

that self-certification is an indispensable aspect of provid-
ing accountability at the network layer. Accountability
requires a verifiable identity, and in these settings the only
practical method of verification uses cryptographic signa-
tures. Thus, identifiers must be bound to their public key.

Existing schemes (e.g., S-BGP [14]) implement this
binding using registries that map identifiers to their pub-
lic keys (a PKI). Unfortunately, these registries must be
both up-to-date (via manual configuration5) and globally
trusted. Self-certifying addressing frees security mecha-
nisms from undesirable trust relationships or manual con-
figuration. Existing IP and transport security mechanisms
(e.g., IPsec [13]) could also use AIP’s self-certifying ad-
dress structure to securely establish the identity of a re-
mote host, rather than relying on an external infrastruc-
ture.

4 Control-Plane Accountability

Today’s Internet routing infrastructure provides almost no
accountability. A malicious or misconfigured AS can “hi-
jack” IP address space (i.e., advertise IP prefixes that it
does not own), because there is no intrinsic association
between an autonomous system number and its part of
the IP address space. It is also possible to forge routing
announcements with false AS paths, causing traffic to be
redirected in unexpected and undesirable ways.

Securing routing involves fixing both of these prob-
lems: the infrastructure should provide origin authenti-
cation (ensuring that the AS that originated the route ac-
tually owns the block of IP addresses being advertised)
and path authentication (ensuring the accuracy of the AS
path). Solving these problems involves holding an AS ac-
countable for its routing announcements.

Recent proposals retrofit cryptographic mechanisms
onto BGP to address these shortcomings [14, 31]. Unfor-
tunately, the deployment of such secure routing schemes
is hindered by the Internet’s simultaneous use of two log-
ically distinct and unrelated name spaces: AS numbers
and IP prefixes. This independence forces routing secu-
rity to depend on two external infrastructures: a “routing
registry” (a database recording which AS owns each pre-
fix) and a PKI for ASes. Even if a PKI for ASes’ public
keys came to pass, experience has shown that such types
of registries are disappointingly inaccurate [10].

Self-certifying ADs make secure BGP routing intrinsic
to the architecture, not dependent on external registries
or operator vigilance. Origin and path authentication are
natural by-products of this design, as we now show.

4. We expect that each field would be at least 128 bits in size.
5. Experience with Internet address registries suggests that keeping

these registries accurate and up-to-date will be difficult [10, 12, 25].

3



Origin authentication, which is particularly lacking in
the current routing system, becomes automatic because
AD numbers are derived from public keys. ADs can ex-
change public keys using separate BGP messages or us-
ing a lookup service [31]. Verifying AD announcements
appears practical, given current cryptographic speeds: a
router that learns several hundred thousand ADs and two
or three routes per AD could verify an entire routing ta-
ble’s worth of signatures on the order of minutes with
manageable computational overhead.6

Path authentication proceeds as in S-BGP [14]: some
router in ADi signs the AD path [ADi+1 ADi . . . AD0]. A
router receiving an announcement with this AD path ver-
ifies every signature in the route update before installing
the route in its routing table. Thus, each route advertise-
ment must be signed once by each AD along the AD path;
a router that receives a route must verify N−1 signatures,
where N is the number of labels on the AD path. The sig-
nificant advantage over the status quo is that because AD
identifiers are self-certifying, path authentication does not
need a PKI. One disadvantage to this approach is that re-
voking a public key requires the AD number to change.
Section 6 considers this shortcoming in more detail.

5 Source Accountability
AIP provides an automatic mechanism for source account-
ability, ensuring that hosts cannot spoof the source ad-
dress of their packets. This mechanism enhances the effec-
tiveness of some current schemes to combat DoS attacks
(e.g., by filtering [11] or simply by contacting the ISP re-
sponsible for the offending traffic) and also enables new
defenses, as we discuss later in this section. The inability
to trust the source address of packets has caused numerous
other security vulnerabilities, such as those due to using
trusted IP addresses for authentication in “.rhosts” files.
In general, we believe that many other aspects of the net-
work architecture pertaining to security will be improved
or simplified if they need not deal with address spoofing.

5.1 Preventing Spoofing

The limited success of ingress filtering [3, 7] has shown
that mechanisms that depend on correct operator action
are often only marginally effective. AIP’s source account-
ability, in contrast, makes use of self-certifying addressing
to develop simple mechanisms that verify the source of
packets—and drop the packets if the sources are spoofed.
AIP’s source accountability mechanism requires no con-
figuration by operators and no interaction from operators
or end-users.

AIP’s source accountability mechanism extends (and
makes feasible) “unicast reverse path forwarding”

packet
AcceptY

cache?
In accept

Trust N
Local AD? N

Y

Y Y

Nverify?

Y

accept cache

Drop
packet

source AD:X

Receive Nonce

N
Ignore

Send 
NonceAdd to

Receive Packet 

AD?
neighboring Pass uRPF?

Figure 1: Process for verifying a packet’s source address.

(uRPF) [8]. uRPF is an automatic filtering mechanism
that only accepts packets if the route to the packet’s source
address points to the same interface on which the packet
arrived. uRPF is extremely useful at the edge for au-
tomatically preventing spoofing by single-homed clients,
but it cannot cope with multi-homed customers and, be-
cause of route asymmetry, it does not work in the core.
AIP’s source accountability mechanism essentially com-
bines uRPF with a second mechanism to automatically
verify if packets are valid even if they arrived on an in-
terface other than the reverse route to the destination.

Recall that the AD and EID components of an address
are hashes of public keys. We use these public keys to val-
idate the source address of a packet in two places. First,
each first-hop router verifies that its directly-connected
hosts are not spoofing. Next, each AD through which a
packet passes verifies that the previous hop is a “valid”
previous-hop for the specified source address. The pro-
cess for verifying a packet’s source address, AD:EID,
summarized in Figure 1, is as follows:

EID verification: If the first-hop router, R, has not re-
cently verified the source host, it drops the packet and
sends a nonce to the source. To prevent the router R
from needing to keep state for each nonce it sends, this
nonce is a function of the source’s EID, a coarse times-
tamp, and a secret known only to R. The sender must
prove that it has identity EID by signing the nonce with
the private key associated with EID. If the host produces
the correct signature, R caches this information and allows
subsequent packets to pass. The host must re-send (“re-
flect”) the packet that generated the nonce to the router, to
avoid having any router maintain state for unverified pack-
ets. For complete protection, this mechanism might need
to be implemented in network switches, or would need to

6. Cryptographic hardware could, of course, reduce this time consid-
erably, but even with only commodity processors the time is not exces-
sive. Route processors are getting faster (Cisco’s CRS-1 route proces-
sor is 1.2GHz); signature verification can be performed offline; and fast
cryptosystems such as ESIGN [22] running on a 3 GHz processor can
create and verify 2048-bit signatures in 150 and 100 microseconds, re-
spectively [17, §7.2.2].

4



be linked to some switch-level ARP security mechanism.
In fact, this process is analogous to a “verifiable ARP”
check, and can also be used to prevent sources from forg-
ing ARP replies.

AD verification: When a packet crosses an AD bound-
ary, the incoming AD must decide if the source address
is valid. For a packet entering AD A from AD B, AD A
performs the following checks:

1. If A trusts B to have performed the appropriate set of
checks on the packet’s source address (as might be
the case between pairs of tier-1 or mutually trusted
ISPs), then A forwards the packet.

2. If A does not trust B, then A performs uRPF checks,
which determine whether it arrived on an interface
leading back to that source. If the packet’s source
address passes uRPF, A forwards the packet.

3. If these tests fail (e.g., in the case of route asym-
metry), A drops the packet and sends a nonce to
AD:EID, asking EID to produce a signature. If EID
does so, it proves two things: First, that EID origi-
nated the packet that triggered the nonce exchange.
Second, that EID is legitimately contained in AD
(or in one of AD’s upstream networks, which is in
a position to spoof packets on behalf of EID in any
case) and so should be allowed to transmit packets as
AD:EID.

To avoid keeping state, A generates the nonce in a man-
ner similar to a “SYN cookie”, hashing a coarse time
counter t, the source address AD:EID, and a secret s
known only to A. A can then verify that the returned nonce
is correct, using the timestamp to prevent replay attacks.
If it is, then A temporarily inserts AD:EID into its accept
cache, allowing subsequent packets through.7

Preventing address “minting”: While the mechanisms
above prevent an attacker from spoofing its AD or using
the EID of another host, an attacker could mint new ad-
dresses at will. This minting could be used to circumvent
EID-based filtering. By preventing AD-level spoofing,
however, AIP creates an incentive for ADs themselves to
prevent or limit minting. A victim facing an attack from
an inordinately large number of (apparently) unique EIDs
from one domain would simply filter all traffic from that
domain, stopping the attack but potentially causing collat-
eral damage. ADs can easily limit the number of EIDs a
host can claim using techniques similar to MAC-address
limiting in Ethernet, or prevent EID forgery by having
internal mechanisms to authorize EIDs to use particular
ports.

5.2 “Shutting-Off” Unwanted Traffic

While the techniques above directly eliminate some
classes of DoS attacks, such as “reflector” attacks that
forge requests to appear to originate from the victim, other
attacks remain unaffected, such as flooding a victim with
traffic from compromised hosts. AIP’s self-verifying ad-
dresses enable a new approach to throttling unwanted traf-
fic whereby a victim host sends an explicit “shut-off” mes-
sage to a host sending it traffic that it doesn’t want to re-
ceive. Self-verification ensures the authenticity of these
messages.

Most compromised machines are owned by well-
intentioned users or businesses [24]. Although the vul-
nerabilities caused by the complexity of modern software
make it difficult for the owners to prevent compromises,
they do not launch attacks of their own volition. We there-
fore envision equipping end hosts with a smart network
interface card (“smart-NIC”) that aids in controlling the
network behavior of the end host by selectively suppress-
ing or rate-limiting packet transmission. The suppression
mechanism of the smart-NIC would be beyond the reach
of the host OS and thus wouldn’t be subject to compro-
mise. The only way to modify the NIC’s firmware or con-
figuration would be by having physical access to it, e.g.,
by plugging it into a USB or serial interface. In normal
operation, it would be unmodifiable from the host.

The smart-NIC would record the hashes of recently sent
packets and respond to a special class of packets called
shut-off packets (SOPs). A SOP sent from host X to host
Y would include X’s public key, a hash of a recent packet
sent to X from Y , and a TTL, all signed by X . Upon re-
ceiving such a packet, the smart-NIC would first check to
see if it indeed had any record of such a packet. If not, it
would disregard the SOP; if so it would install a filter in
the NIC suppressing further packets from Y to X for the
duration of the TTL.

AIP’s combination of self-certifying addresses and
spoof detection makes this approach feasible. X’s signa-
ture and its key (which can be verified as belonging to X)
assures Y that X (or at least someone with X’s private key)
has sent the request. The hash of a recent packet proves
that Y has recently sent a packet to X . This proof is neces-
sary to prevent replay attacks, and to prevent an attacker
from exhausting the filter state in the NIC to allow them
to continue attacking a chosen victim. It is important that
this process not require a three-way handshake, as a host
under attack may not receive the return packets. This ap-
proach can also be extended to filtering packets sent to an
AD, not just an individual host.

7. We depict the accept cache as examining both AD and EID, so that
one rogue host cannot give outsiders the ability to spoof other nodes in
its AD. For efficiency, of course, a router might choose to weaken this
property by keying the accept cache on a per-AD basis.

5



6 Challenges
AIP’s structure is conceptually simple, but significant re-
search will be needed to ensure that it will work in prac-
tice. We outline three specific questions about AIP with
regard to practical issues of scaling, traffic engineering,
and key management.

6.1 Routing Scalability
Only 15 years after the Internet moved away from classful
routing, why do we suspect that flat addressing can scale
as well or better than current Internet routing? We exam-
ine this question along two axes: the amount of routing
state and the volume of routing updates.

The routing state that AIP must cope should be man-
ageable. Modern routers handle one million or more rout-
ing table entries [29], and with sufficient incentive, ven-
dors could scale this number without too much difficulty.
Furthermore, routing on ADs requires a flat table look-up,
not the more complex longest-prefix match required un-
der today’s IP architecture. AIP might increase routing
table state, because we do propose splitting some large
ASes into several ADs. On the flip side, however, it re-
duces table entries because organizations would not face
arbitrary allocation limits on the number of hosts (EIDs)
they could maintain in their AD. Interior routing would
only need to scale to tens of thousands of nodes, a num-
ber already quite reasonable [21]. Further study is clearly
required to answer this question, but we believe there is
reason to be optimistic.

Update volume is a greater concern. Volume would
likely increase linearly with the number of ADs, but a
more serious possibility is that path length could grow
if large ASes were split into several ADs. BGP’s con-
vergence time and update volume can grow with path
length [16], so understanding the effects of such a change
is a critical question to address. Fortunately, if update vol-
ume becomes unbearable, next-generation routing propos-
als such as HLP [28] successfully borrow techniques from
link-state routing to improve the scalability and conver-
gence time of wide-area routing.

6.2 Traffic Engineering
ISPs require control over routing to meet their traffic engi-
neering goals; today, network operators typically manip-
ulate traffic on the granularity of IP prefixes [6, 9]. AIP
faces two challenges: ADs may be too large to permit ef-
fective traffic engineering (e.g., if ADs are like today’s
ASes), or ADs may be too small (e.g., if ADs were as-
signed at the granularity of today’s prefixes). Which of
these presents the major problem depends on how AIP is
used; lacking a crystal ball, we outline solutions to each:

1. Aggregating ADs for TE: To perform traffic engi-
neering at a more coarse granularity, AIP could use a
LISP-like [5] tunneling approach, similar to proposals al-
ready under consideration by the IETF:

1. ADs prepend packets with a new address header con-
taining an outer destination and source address. The
outer addresses represent aggregates to ADs.

2. Operators configure IP layer TE policies using the
less numerous outer addresses.

3. ADs discover a mapping from original destination to
the outer tunnel address. These mappings must be
maintained using an (unspecified) mechanism, but
the process need not be complex because the map-
pings are relatively static.

2. De-aggregating ADs for finer-grained TE: The ad-
dresses contained inside an AD are also flat. To flexi-
bly de-aggregate an AD, the routing announcements for
the AD could be augmented with a “range” indicator
that told other providers which EIDs to apply to this
route. Such a mechanism would permit operators more
fine-grained control at the cost of more expensive route
lookups. Whether such an approach is better or worse
than simply splitting an AD into smaller components is a
question for future work.

6.3 Key Management

Keys will inevitably be compromised. The architecture
must minimize both the chances of this event occurring
and the pain involved in recovering from such an event.

Reducing the chance of compromise: We believe that
in practice, domains would have a two-level key hierarchy.
The self-generated domain key would be held very tightly
and used to sign certificates for individual routers. This
approach allows the administrators of an AD to choose
between slightly increased complexity (though they still
generate and maintain all of their keys completely inde-
pendently of other entities) and resilience to key compro-
mise. The question remains open whether this approach
is better dealt with by revocation or short certificate life-
times, who should maintain revocation lists, and so on.

Reducing the pain of recovery: Many questions re-
main in this area. Does this two-level key hierarchy lend
itself better to revocation or to short certificate lifetimes?
If an actual domain key is compromised, the domain must
“re-number”, since its very identity is compromised. What
mechanisms (akin, perhaps, to today’s DHCP and related
protocols) can be used to make re-numbering an entire
domain a relatively painless process? We note that solu-
tions to this problem would benefit today’s stub ASes and
customers who switch providers. The problem, of course,
touches upon router and peering configurations, host ad-
dressing, and name service, at a minimum. Because of

6



the complexity involved, not only would we need tools to
deal with re-numbering, but careful thought must be put
into the architectural dependencies to minimize the num-
ber and scope of the services that must be so updated.

7 Conclusion
It is high time that Internet entities be held accountable.
No longer should hosts be able to forge addresses with
impunity, nor attackers be able to hijack routes without
fear of consequences. By basing Internet addressing on
a simple principle—a flat, two-level hierarchy in which
both address components are self-certifying—AIP brings
new and needed accountability to the Internet architecture.
While significant challenges must be surmounted to bring
its ideas to fruition, we believe that the potential benefits
of the proposal make it worthy of serious consideration by
the community.

Acknowledgments
We thank Amar Phanishayee, Anirudh Ramachandran, Vi-
jay Vasudevan, Mythili Vutukuru, Michael Walfish, and
Dan Wendlandt for their contributions to some of the
ideas in this paper. This work was supported by the Na-
tional Science Foundation under awards CNS-0716278
and CNS-0520241.

References
[1] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing

packet obituaries. In Proc. 3nd ACM Workshop on Hot Topics in
Networks (Hotnets-III), Nov. 2004.

[2] T. Aura. Cryptographically Generated Addresses (CGA). Internet
Engineering Task Force, Mar. 2005. RFC 3972.

[3] R. Beverly and S. Bauer. The Spoofer project: Inferring the ex-
tent of source address filtering on the Internet. In Proc. SRUTI
Workshop, July 2005.

[4] CNET News.com. Router Glitch Cuts Net Access. http://
news.com.com/2100-1033-279235.html, Apr. 1997.

[5] D. Farinacci, V. Fuller, D. Oran, and D. Meyer. Locator/ID
Separation Protocol (LISP). Internet Engineering Task Force,
July 2007. http://www.ietf.org/internet-drafts/
draft-farinacci-lisp-02.txt Work in progress, ex-
pires January 18, 2008.

[6] N. Feamster, J. Borkenhagen, and J. Rexford. Guidelines for in-
terdomain traffic engineering. ACM Computer Communications
Review, 33(5), Oct. 2003.

[7] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address Spoof-
ing. Internet Engineering Task Force, Jan. 1998. RFC 2267.

[8] P. Ferguson and D. Senie. Network Ingress Filtering. Internet
Engineering Task Force, May 2000. BCP 38, RFC 2827.

[9] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a
changing world. IEEE JSAC, 20(4):756–767, May 2002.

[10] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and
A. Rubin. Working around BGP: An incremental approach to im-

proving security and accuracy in interdomain routing. In Proc.
NDSS, Feb. 2003.

[11] J. Ioannidis and S. M. Bellovin. Implementing Pushback: Router-
Based Defense Against DDoS Attacks. In Proc. Network and Dis-
tributed System Security Symposium (NDSS), Feb. 2002.

[12] J. Karlin, S. Forrest, and J. Rexford. Pretty Good BGP: Protecting
BGP by cautiously selecting routes. Technical report, University
of New Mexico, Oct. 2005. TR-CS-2005-37.

[13] S. Kent and R. Atkinson. Security Architecture for the Internet
Protocol. Internet Engineering Task Force, Nov. 1998. RFC 2401.

[14] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol
(S-BGP). IEEE JSAC, 18(4):582–592, Apr. 2000.

[15] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure over-
lay services. In Proc. ACM SIGCOMM, pages 61–72, Aug. 2002.

[16] C. Labovitz, A. Ahuja, R. Wattenhofer, and S. Venkatachary. The
impact of Internet policy and topology on delayed routing conver-
gence. In Proc. IEEE INFOCOM, Apr. 2001.

[17] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In Proc. 6th USENIX OSDI, Dec. 2004.

[18] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Sep-
arating key management from file system security. In Proc. 17th
ACM Symposium on Operating Systems Principles (SOSP), pages
124–139, Dec. 1999.

[19] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Archi-
tecture. Internet Engineering Task Force, May 2006. RFC 4432.

[20] J. Moy. OSPF Version 2, Mar. 1994. RFC 1583.
[21] A. Myers, T. E. Ng, and H. Zhang. Rethining the service model:

Scaling ethernet to a million nodes. In Proc. 3nd ACM Workshop
on Hot Topics in Networks (Hotnets-III), Nov. 2004.

[22] T. Okamoto and J. Stern. Almost uniform density of power
residues and the provable security of ESIGN. In ASIACRYPT,
pages 287–301, 2003.

[23] A. Ramachandran and N. Feamster. Understanding the Network-
Level Behavior of Spammers. In Proc. ACM SIGCOMM, Aug.
2006. An earlier version appeared as Georgia Tech TR GT-CSS-
2006-001.

[24] M. Shaw. Leveraging good intentions to reduce unwanted network
traffic. In Proc. USENIX Steps to Reduce Unwanted Traffic on the
Internet workshop, July 2006.

[25] G. Siganos and M. Faloutsos. Analyzing BGP Policies: Methodol-
ogy and Tool. In Proc. IEEE INFOCOM, Mar. 2004.

[26] T. L. Simon. oof. panix sidelined by incompetence...
again. http://merit.edu/mail.archives/nanog/
2006-01/msg00483.html, Jan. 2006.

[27] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana. Internet
indirection infrastructure. In Proc. ACM SIGCOMM, pages 73–86,
Aug. 2002.

[28] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica. HLP: A next generation inter-domain
routing protocol. In Proc. ACM SIGCOMM, Aug. 2005.

[29] G. Varghese. Network Algorithmics. Morgan Kaufmann, 2007.
[30] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,

and S. Shenker. Middleboxes no longer considered harmful. In
Proc. 6th USENIX OSDI, Dec. 2004.

[31] R. White. Securing BGP through secure origin BGP.
The Internet Protocol Journal, 6(3), Sept. 2003. http:
//www.cisco.com/web/about/ac123/ac147/
archived_issues/ipj_6-3/ipj_6-3.pdf.

[32] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In Proc. ACM SIGCOMM, Aug. 2005.

7

http://news.com.com/2100-1033-279235.html
http://news.com.com/2100-1033-279235.html
http://www.ietf.org/internet-drafts/draft-farinacci-lisp-02.txt
http://www.ietf.org/internet-drafts/draft-farinacci-lisp-02.txt
http://merit.edu/mail.archives/nanog/2006-01/msg00483.html
http://merit.edu/mail.archives/nanog/2006-01/msg00483.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-3/ipj_6-3.pdf
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-3/ipj_6-3.pdf
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-3/ipj_6-3.pdf

	Introduction
	Why Accountability?
	Accountable Internet Protocol
	Basic Structure and Function
	Self-Certifying Addresses

	Control-Plane Accountability
	Source Accountability
	Preventing Spoofing
	``Shutting-Off'' Unwanted Traffic

	Challenges
	Routing Scalability
	Traffic Engineering
	Key Management

	Conclusion

