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ABSTRACT

In North America, electricity prices exhibit both temporal and

geographic variation—the later exists due to regional demand

differences, transmission inefficiencies and generation diversity.

Using historical market data, we characterize the variation and

argue that existing distributed systems should be able to exploit

it for significant economic gains. We consider pricing in cloud

computing systems, and also use simulation to estimate the ad-

vantage of dynamically shuffling computation between different

energy markets.

1 INTRODUCTION

Electricity is becoming increasingly expensive, and now

accounts for a large fraction of the cost of ownership for

data centers [1]. It is expected that by 2012, in the US,

3-year energy costs for data centers will be at least twice

as much as the server investment [2].

At the same time, deregulation, regional demand vari-

ations and energy source diversity have resulted in an un-

even and occasionally volatile cost landscape. In the US,

electricity prices at two different places can have very dif-

ferent annual averages (figure 1), and prices at a location

can vary day to day by a factor of five (figure 4).

Like cost, the utility gained by a distributed system’s

clients may also depend on location. Generally, a client

receives less utility if their request is served far away from

them. Many existing systems typically maintain multi-

ple replicas, routing clients to nearest replicas, attempting

to maximize client utility, while ignoring the geographic

variation of cost.

In such replicated systems, it is possible to trade-off

between computing in a high cost market versus comput-

ing in a lower cost market but with reduced client utility.

Shifting clients away from their best replicas, to ones sit-

uated in cheaper energy markets, may reduce quality-of-

service but yields significant monetary savings.

To some extent, this trade-off is implicit in the place-

ment of large data centers in low-cost energy markets

(Google in Oregon and Microsoft in Illinois) rather than

in high-demand locations (e.g. New York City). We argue

that, due to existing price volatility, this trade-off should

be a dynamic choice rather than a static one.

This paper investigates the implications of electricity

price volatility and locational variation to Internet scale

systems. We argue that there is something to be gained,

by building price-sensitive distributed systems, that au-

tomatically integrate up-to-date market information, and

make cost/performance trade-offs.

We sketch the connection between computing cost

and energy cost and establish the significance of loca-

tional variation. Using historical electricity market data,

we show that the day-to-day, monthly, and yearly varia-

tion is substantial. We note that daily prices, at locations

near Internet peering points, exhibit exploitable volatility.

We briefly cover how cloud computing providers

could increase their margins by being sensitive to geo-

graphic variation in energy prices—either with price dif-

ferentiation or by using cost-optimized routing.

Finally, we use simulation and a 2006-2008 history of

US market prices to explore cost/performance trade-offs

within Internet-scale replicated systems. We simulate se-

lective blackouts, where one or more replicas are deacti-

vated in response to market signals. We quantify possible

energy cost savings and discuss practical implications.

To the best of our knowledge, this paper contains

the first proposal for distributed systems to use online

optimization to algorithmically exploit information from

electricity futures and/or spot markets.

2 BACKGROUND

2.1 Concerns about Electricity Cost

Data center energy costs are becoming an increasingly

dominant component of overall operating costs. The cost

of electricity is poised to overtake the cost of equipment

[3]. In the US: in 2000 three-year energy costs were one-

tenth the server equipment expenditures; by 2009 the cost

of electricity is expected to equal server expenditure; and

by 2012, energy is expected to cost at least twice the

equipment investment [2]. These expectations take into

account recent advances in data center energy efficiency.

For a denser non-traditional data center (e.g., Sun’s S20

[4]), 2-year energy costs could already exceed the equip-

ment cost, depending on configuration and location.

Additionally, in absolute terms, servers consume a

substantial amount of electricity. Servers and their sup-

port infrastructure (e.g., cooling) accounted for about

1.2% of US electricity consumption in 2005, about 45

million MWh, or 2.7 billion dollars [5]. By 2010, this is

projected to grow to 3% of total US consumption [5].

Consequently, for companies with large computing

facilities, even a fractional reduction in electricity costs

can translate into a large overall savings. For example, it

was estimated that Google owned 450,000 servers world-

wide in 2006 [6] and that each server consumed upwards

of 200 watts [7]. Each watt used by a computer results

in at least two watts drawn from the electric grid [1, 3].

We can, conservatively, estimate that Google servers used

around 1.6 million MWh in a year, or 95 million dollars
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Location 2004 2005 2006 2007

New York (NYC) 63.1 93.5 70.9 77.1

New England (MA) 53.7 78.6 60.9 67.9

Southwest (Palo Verde) 50.1 67.4 57.6 61.7

Southeast (SERC/FRCC) 48.6 70.8 55.5 59.1

PJM Interconnect (West) 41.7 60.6 50.1 56.9

Northwest (MID-C) 44.5 63.0 50.2 56.6

California (NP-15) 38.4 54.4 43.4 54.6

Texas (ERCOT-North) 42.3 66.5 51.4 52.0

Midwest (Cinergy) 38.4 40.5 46.1

Figure 1: Annual average prices [9], in $/MWh, sorted by 2007 prices.

worth of electricity, at US rates1. Therefore, every 1%

savings in energy cost could save a large company like

Google, a million dollars a year. Google is not alone. Mi-

crosoft expects to deploy 800,000 servers by 2011 [6],

and the five leading search companies may have already

deployed more than 2 million servers [8].

New cooling technologies, architectural redesigns,

DC power, multi-core servers, virtualization and energy

aware load balancing algorithms, have all been proposed

as ways to reduce the energy consumed by a single data

center. That work is complementary to ours. However,

this paper is concerned with reducing cost—our approach

can achieve this, even if it causes consumption to rise.

2.2 Electricity Markets

Although market details differ regionally, this section

provides a high-level view of deregulated electricity mar-

kets, providing a context for the rest of the paper. The

discussion is based on markets in North America, but the

ideas generalize to other regions with diversified markets.

Electricity is produced by government utilities and in-

dependent power producers using a variety of sources.

In the United States, this includes nuclear (about 10%),

coal (around 30%), natural gas (nearly 40%) and hydro-

electric (roughly 8%) [10].

Producers and consumers are connected to an elec-

tric grid of transmission lines. Electricity cannot be stored

easily, so supply and demand must continuously be bal-

anced. In addition to connecting nearby nodes, the grid

can be used to import and export electricity from/to dis-

tant locations. The United States is divided into ten mar-

kets [9], with varying degrees of inter-connectivity. Con-

gestion on the grid, transmission line losses, and market

seams issues either limit how electricity can flow, or in-

fluence the price at a given location [11].

The existence of rapid price fluctuations reflects the

fact that short term demand for electricity is far more elas-

tic than short term supply. Electricity cannot always be ef-

ficiently moved from low demand areas to high demand

areas, and power plants cannot always ramp up easily. In

contrast, we have long used high performance networks

and load balancing techniques to relocate computation.

We can move our demand closer to a low-cost supply.

1450, 000 × 200W × 2 × 24h × 365 = 1.5678 × 1012Wh @ 6¢/kWh

Location Nearby City Hub Market

A San Jose, CA NP15 California

B San Diego, CA SP15 California

C Portland, OR MID-C Northwest

D Chicago, IL Illinois Midwest

E Ashburn, VA PJM-West PJM

F Houston, TX ERCOT-H ERCOT

G Miami, FL Florida Florida

Figure 2: Seven locations, near different Internet exchange points, and

in different electricity markets.
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Figure 3: Monthly variation in wholesale market prices can be substan-

tial and geographically dissimilar. For example, comparing (b) with (a):

prices at F trebled, while those at C halved.

While short-term and long-term contracts may ac-

count for most of what is consumed, electricity can also

be bought in wholesale markets. In most regions, day-

ahead, hour-ahead, and spot markets exist. In this paper

we focus on day-ahead markets. Such markets allow con-

sumers to determine the price of electricity the day before

it is delivered. Day-ahead prices are forward signals, that

can be used to decide how much to consume.

A caveat: companies running data centers may have

contracts with electricity providers, do not buy directly

from the wholesale market, and so may be buffered from

the price volatility we are looking to exploit. Contractual

details are hard to come by; this paper ignores contracts.

In reality, there is a great deal more complexity, but

our market model is simple: a futures market exists; day-

ahead prices are accessible and variable; and different lo-

cations see prices that are not perfectly correlated.

2.3 Computation Cost

A service provider accepts requests, performs some com-

putations, and produces responses. The provider incurs

some cost in fulfilling this demand.

We model the total computation cost (C) incurred by

a service provider at a given location as follows: a large

fixed component, the infrastructure cost (I), and a signif-

icant variable component (V), which is a monotonically

increasing function of demand.

In this formulation, I includes the amortized infras-

tructure investment, staff salaries, etc. V includes both

network and energy costs, but we ignore network costs.

Studies have shown that electricity consumption closely

follows CPU utilization [12]. Using techniques like multi-

core CPUs and virtualization, resources can be allocated

on-demand, causing electricity use to step up.

The marginal computation cost is the incremental cost
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Figure 4: Day-ahead wholesale market prices exhibit significant volatility. For example, prices at E were $54/MWh in (b) but $256/MWh in (d).

of handling one more request, or the derivative of C w.r.t.

demand. The average cost is the mean cost per request,

or C divided by demand.

Differences in electricity prices will always show up

in the marginal computation cost for different locations,

assuming constant server energy efficiency. If electricity

costs are a large enough fraction of overall cost, price

volatility will begin to palpably affect average cost.

3 ELECTRICITY PRICE VARIATION

This paper posits that electricity prices vary dynamically,

that prices at different locations are not perfectly corre-

lated, and that differences can be exploited for economic

gain. Rather than presenting a theoretical discussion, we

take the experimental approach, grounding ourselves in

historical market data, from multiple sources [9, 10, 13].

We begin with average annual electricity prices, tabu-

lated in figure 1 for several locations. In 2007, Northeast

prices were over 1.5 times Midwest prices, contributing to

the impracticality of large data centers in the Northeast.

The remainder of the paper focuses on the smaller set

of seven locations from figure 2, all of which are near ma-

jor Internet exchange points (IXPs) and cover a number of

diverse electricity markets.

Apart from annual variation, prices also exhibit sea-

sonal and monthly variation. Figure 3 shows average

prices for two different months. In the South, in June

’08 the energy needed to handle a million requests would

have cost twice as much in Houston (location F) com-

pared to Miami (G). In October ’07, the cost difference

would have been relatively insignificant. Similarly, on

the West coast, in June, electricity in California (A) was

thrice as expensive as electricity in Oregon (C), but in

October prices were roughly the same. Furthermore, the

relative ordering of prices was very different in the two

months. Houston (F), for example, moved from the sec-

ond cheapest market to the most expensive.

Part of the market diversity arises because different

regions produce electricity in different ways. For exam-

ple, in 2006: in Oregon, natural gas accounted for 8%

and hydroelectric for 68% of the summer generation ca-

pacity; whereas in Texas, natural gas accounted for 71%

and coal for 20% of the summer capacity [10]. Conse-

quently, record high natural gas prices in 2008 have had

much larger impact on Texas than on Oregon.

Prices in wholesale markets also exhibit significant

day-to-day volatility, for a variety of reasons. For exam-

ple, a localized event such as a heat wave in California

could drive up local demand, elevating West-coast prices.

Figure 4 shows day-ahead prices for four different days.

Price spikes such as those shown in figure 4a and figure

4d occasionally occur. Price volatility has many hard-to-

predict causes (e.g., accidents, equipment malfunctions,

weather, fuel costs, demand volatility, market manipu-

lation, etc.). Figure 5 shows a more detailed picture for

some locations, plotting the evolution of day-ahead mar-

ket prices from January 2006 through June 2008. Some

notable features: seasonal effects, short-term spikes, and

only partially correlated behaviour. A detailed discussion

is beyond the scope of this paper.

In this paper we restrict ourselves to day-ahead market

prices. However, significantly more price volatility ex-

ists in hour-ahead and spot markets [11]. Traditional con-

sumers cannot respond quickly enough, but distributed

systems can re-route computation at millisecond scale, to

modulate their consumption. Beyond our findings in this

paper, there may be opportunities within spot and hour-

ahead markets, that traditional electricity consumers can-

not exploit, but distributed systems can exploit.

4 PRICING IN CLOUDS

With the rise of web-based computing and the computing-

as-a-utility model, many companies are renting out their

infrastructure to third-party applications. Examples in-

clude Amazon’s EC2, Google’s AppEngine and Sun’s

Grid. Applications are billed by the resources they con-

sume: computation cycles, network I/O and storage.

How much does it cost a provider to perform one unit

of work on behalf of a hosted application? How much

does it cost Amazon to handle a single client request on

behalf of a hosted web application?

Cost depends on where the request is routed. We have

already established that marginal computation costs can

differ radically with location and in time. Furthermore,

refer back to the cost model from section 2.3. Large cloud

providers (Amazon and Google) will already need to ab-

sorb their fixed costs. They need to build multiple data

centers, and keep machines up and running, to support

their own primary services. The cost to them of perform-

ing some incremental work on behalf of a hosted applica-
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Figure 5: Day ahead index prices at different hubs, from January 2006 through June 2008 [13]. Note the seasonal dips in the hydro dominated

Northwest, and the 2008 upward trend in California and Texas, both of which are heavily dependent on natural gas. Price spikes reached $350.

tion will be dominated by the marginal cost, mainly the

cost of the additional watts they expend.

By charging a fixed compute-price, while being

able to decide where to buy electricity, cloud providers

are missing an opportunity. With a price structure that

embraces energy cost diversity, and by using a cost-

conscious replication strategy, cloud providers can in-

crease their margins or lower their prices.

Buyers care about how much they are charged and

what performance their users receive. Providers can build

energy cost differences into some pricing plans, allow-

ing buyers to make trade-offs. For example, free appli-

cations should always be hosted in the lowest cost loca-

tions, capacity permitting. Additionally, some buyers may

be willing to pay premiums for regionally optimized per-

formance. The Dallas Morning News website, having re-

gionally concentrated demand, values proximity, and can

therefore be billed to compensate for elevated prices.

These ideas can be mapped to content distribution net-

works. For instance, a CDN provider could charge a pre-

mium for hosting content in high energy cost markets.

5 SELECTIVE BLACKOUTS

Internet-scale systems composed of replicas in differ-

ent electricity markets can exploit price disparities to

substantially reduce their total energy costs, by using

Information from energy futures markets, and dynami-

cally shifting consumption away from high-cost regions.

Through simulation, we show that an approach based on

this idea could yield considerable monetary savings.

5.1 System Model

In the systems we focus on, storage and computing in-

frastructure can be decomposed into a number of blocks,

where each block is a complete replica of the system2.

2Less flexible but acceptable: strict subsets are complete replicas.

The blocks may be:

• For large companies, the blocks are large data cen-

ters, owned and operated by the company. Each

block can have many thousands of physical ma-

chines, and easily consume 4500 kW [1].

• The blocks can be much smaller data centers. In the

extreme, blocks may be one or more of Sun’s data-

center-in-a-container [4], each with fewer than 300

machines and 500 kW of peak consumption.

• For small providers, the different blocks can be

leased floor-space in data centers owned by other

parties3. The main difference between this case and

the above cases is control over infrastructure: in the

earlier cases if the provider decided to turn off the

machines, they can also shut off cooling etc.

An incoming client request to such a system can be

served by any of the replicas. In existing systems, replicas

tend to be placed near IXPs, such as the locations in figure

2. Conventionally such systems attempt to keep all replica

locations active. In order to maximize performance, client

requests are routed to their closest replicas.

In the discussion that follows, we assume that the sys-

tem is over-provisioned: some subset of the replicas has

enough capacity to handle the peak load.

We also make a number of simplifying assumptions.

We model demand as constant and uniformly distributed.

When some blocks are deactivated, we assume client re-

quests will be spread evenly over the remaining blocks

and that total energy use is therefore constant. Further-

more, we assume that a deactivated block consumes zero

energy, and that the startup/shutdown process also con-

sumes no energy4. Finally, we assume that shutting down

one replica does not affect prices at any other replicas.

3 Our work is only relevant when electricity charges are metered.
4 This ignores the cost of synchronization during replica reactivation.
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2006-2008 market data. A cost of 1.0 represents running all seven.

We use the number of active replicas as a first-order

approximation for performance. We defer a proper analy-

sis of the performance impact of our proposal.

5.2 Selective Blackouts

With enough excess capacity, one or more replicas can

be turned off. This will result in suboptimal system per-

formance and reduce reliability, but can also significantly

reduce energy costs.

Deciding which replicas should be active on any given

day can be modeled as an optimization problem. Each

day, day-ahead market prices can be fed into an auto-

mated mechanism that determines which replicas should

be deactivated the next day. The set of active replicas

changes infrequently, at most once per day, making this

compatible with existing routing techniques (e.g., DNS).

Given n replicas, we constrain that no more than k

replicas can be deactivated on any given day. Thus the

(n−k) lowest cost replicas are always active, regardless of

absolute prices. This provides a consistent performance

baseline. Replicas remain active as long as their prices

are close to the highest price we must pay for baseline

performance. We only force deactivation when a signifi-

cant price disparity exists.

More formally, given day-ahead prices, we derive the

set of active replicas A as follows:

L = {(n − k) lowest cost replicas}

φ = max({pricer for r ∈ L})

A = {replica r iff pricer ≤ (1 + τ) · φ}

τ is a threshold parameter, expressing our sensitivity

to price disparity, as a percentage of the baseline price φ.

5.3 Simulation Results

We simulated the above selective blackout mechanism us-

ing historical prices, wholesale market data from 2006

through 2008 [13], and found that significant cost savings

were possible. Demand was modeled as being constant in

time and uniformly distributed in space.

North America Seven. We first simulated a seven-node

system, one node at each location from figure 2. Figures

6 and 7 summarize the results.

Simulations imply that adding a single redundant

node can reduce total electricity costs by 5% (see figure
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Figure 7: The distribution of the number of active replicas, from simu-

lations using 2006-2008 market data, with n = 7 and k = 4.

6, 0% threshold and k = 1). These savings are the result

of being able to dynamically deactivate nodes during pe-

riods of locally elevated prices. Statically picking the best

six locations is not enough. Section 3 already illustrated

that an always optimal set of six may not exist, and our

simulations reinforced this: all nodes were active some of

the time. The most active 6-subset accounted for 27% and

the next most active 23%, so no subset dominated.

For k ≥ 4, blackouts can result in total energy costs

lower than the average cost of the least expensive market

(MID-C line in figure 6). With only one baseline node

and six redundant nodes (τ = 0, k = 6), energy cost is

85% that of the cheapest node. This is a savings of 27%,

compared to running all seven.

The threshold parameter τ can be used to trade off

between cost and performance. Figure 7 shows how the

number of active replicas depends on τ for k = 4. With a

threshold of 5%, the median number of active replicas is 4

(µ = 3.9) and the total cost roughly matches the cheapest

market (see figure 6). With a threshold of 25%, the me-

dian number of active replicas is 6 (µ = 6.1) and the cost

is close to the second-cheapest market. At the same time,

in contrast with building a large data center in a cheap

market, computation resources are now more likely to be

near an IXP that provides a fast path to a random client.

This can dramatically improve performance.

West Coast Three. With all seven nodes, we can take

advantage of regional diversity (e.g., a heat-wave in Cal-

ifornia does not put pressure on the Illinois hub). Even

though, nearby locations in the same market tend to have

correlated prices, selective blackouts can still be useful.

To demonstrate this, we simulated a three node west-

coast system (NP15, SP15 and MID-C). With blackouts

(50% threshold, k = 2) the resulting total cost is 6% lower

than the cost of continuously running all three, and 8%

higher than the cost of computing everything in Oregon.

The median number of active replicas is 3 (µ = 2.7). For

this to work, Oregon must retain maximum capacity—on

some days it is the only active replica. See figure 8.

5.4 Some Lessons

Building extra, occasionally deactivated, replicas will in-

cur some additional infrastructure cost. However, we have

shown extra replicas can reduce total energy costs.
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Figure 8: West coast simulation results.

If expected energy savings exceed the up-front in-

frastructure investment and added maintenance costs, it

makes economic sense to use some variant of this black-

out mechanism. If data center energy costs in the US dou-

ble in the next four years [2], or if the replicas are modular

data centers [4] with low fixed costs, dynamic blackouts

could make a tangible impact on operating costs.

Additionally, apart from yielding savings, blackouts

can reduce risk, by dampening the impact of unantici-

pated price fluctuations. The mechanism described here,

for example, would automatically integrate market infor-

mation and route around multi-day weather problems.

The choice of where to build a data center is typically

seen as a static optimization problem. If energy costs con-

tinue to rise relative to equipment, it may be better mod-

eled as a dynamic problem. Despite the economies of

scale inherent to large data centers and the possibility of

local tax incentives, a company looking to build a mono-

lith should consider building many smaller blocks (e.g.,

[4]) spread over different energy markets. Redundant ca-

pacity is already built into these systems. It may be better

to spread these resources, rather than concentrating them.

6 CONCLUSION

We set out to show that the diversity and day-to-day

volatility of today’s electricity markets can be exploited

in some meaningful way by existing distributed systems.

Using data from wholesale electricity markets and simu-

lation, we were able to show that replicated systems can

make meaningful cost/performance trade-offs and may be

able to achieve substantial energy cost reductions. Many

possibilities for future work exist within this area.

In order to understand the trade-offs, a good perfor-

mance model is necessary. We use the number of ac-

tive replicas as a coarse performance metric. A better ap-

proach would have been to analyze the network latencies

between clients and active replicas, assuming a uniform

client distribution, using census data, or using server logs.

The impact on reliability should also be considered.

Another convenient simplification was to assume con-

stant demand. In reality, demand varies regionally and

temporally [14, 15]. Depending on the situation, there

may be ways to exploit features within demand signals.

We presented selective blackouts as an illustration of a

price-conscious optimization mechanism, rather than as a

proposed design. A mature mechanism should synthesize

information from both supply (cost) and demand (per-

formance/utility) and derive the best way to use avail-

able resources. In addition, hour-ahead and spot-prices

are more volatile than day-ahead prices, so more frequent

optimization should yield higher savings.

Further, our idea of relating energy costs to compu-

tation costs implies that auctions within computing grids

can be used to match buyers and sellers, to increase the

total economic surplus in the computing utility market.

Finally, contracts complicate the picture, making it

unclear who would reap the savings we calculated. Power

providers may be willing to index charges to market

prices, since this transfers some risk to consumers. If,

on the other hand, contracts fix the cost of electricity, a

deactivated data center would allow the producer to sell

the surplus electricity on the wholesale market. While

this would not impact the data center’s bottom line, the

provider would benefit, and—if resource scarcity has

caused the price elevation—the public would benefit.
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