
DoS: Fighting Fire with Fire

Michael Walfish∗, Hari Balakrishnan∗, David Karger∗, and Scott Shenker†

Abstract
We consider DoS attacks on servers in which attackers’
requests are indistinguishable from legitimate requests.
Most current defenses against this class of attack rely
on legitimate users in aggregate having more of some
resource (CPU cycles, memory cycles, human attention,
etc.) than attackers. A server so defended asks prospec-
tive clients to prove their legitimacy by spending some
of this resource. We adopt this general approach but use
bandwidth as the constrained resource. Specifically, we
argue that when a server is attacked, it should: (1) prevent
overloading by limiting the incoming rate of requests
(and dropping all others) and (2) encourage its legitimate
clients to fight back with aggressive retransmission. This
approach forces all clients to spend bandwidth to receive
service, and the legitimate clients, with their greater ag-
gregate bandwidth, will receive the bulk of the service.

1 Introduction
Our goal is to defend servers from Distributed Denial
of Service (DDoS) attacks in which the attack traffic—
usually generated by compromised and commandeered
machines (i.e., bots), often at the behest of extortion-
ist [23, 26] criminal elements—mimics requests from le-
gitimate clients, forcing the victimized server to spend
much of its time on bogus requests. Examples of such
attacks include using bots to: request large files from
Web servers [24, 25]; make queries of search engines on
Web sites [8]; and issue requests that cause computation-
ally expensive operations (e.g., database transactions) on
Web sites [14]. Like the work in [11, 14], our proposed
solution would be useful for servers whose scarce com-
putational resources can easily be depleted by attack-
ers without the server’s access link being flooded. Such
scarce resources include expensive database or applica-
tion server licenses, CPUs, memory, and disks.

Because the attack traffic looks legitimate and is
sent by hosts all over the Internet, network-layer and
transport-layer DoS prevention tools—installing a box to
filter out anomalies [3, 20], blacklisting particular IP ad-
dresses, using TCP SYN cookies [7], pushback [12, 18],
etc.—do not work. Increasing the server’s access band-
width also doesn’t help and in fact makes it easier for
attackers to overload the server.

The general solution researchers have proposed is
to ask all prospective clients to spend some scarce
∗MIT CSAIL, {mwalfish,hari,karger}@csail.mit.edu
†UC Berkeley and ICSI, shenker@icsi.berkeley.edu

resource—a resource that the legitimate clients are pre-
sumed to have much more of than the attacking hosts.
Conceptually, the server (or an external agent) sets a
price in some currency, which slows the attack, allow-
ing the legitimates to outspend the attackers and get ser-
vice. Proposed currencies include: money [19] (clients
give micropayment for server’s attention); computational
work1 [1,4,5,9,10,13,19] (server won’t serve until client
completes a puzzle); and human attention [11, 14, 22]
(Web server won’t give service unless client solves a
CAPTCHA [27]).

We adopt this general approach, but rather than in-
vent another artificial currency, we propose to use band-
width as the scarce resource. This approach, which we
call proof of net-work, has two components. First, as is
often done today, a middlebox in front of the server lim-
its the rate at which requests reach the server, so that
the server’s resources do not become overloaded. If too
many requests arrive, the middlebox drops some fraction
of them on purpose, and the server continues to give good
service to the requests that reach it.

Second, to avoid long timeouts, the middlebox im-
mediately notifies clients when it has dropped their re-
quests, and the clients immediately and automatically re-
transmit these requests. Each client is thus pushed into a
high repeat-rate pattern typical of DDoS attackers. If the
legitimate clients have more aggregate bandwidth than
the attackers, then this approach of fighting fire with fire
allows them to capture a large fraction of service. Note
that rather than trying to reduce the rate at which attack-
ers can send requests, this approach increases the rate at
which legitimate users do send requests. In essence, the
server asks the legitimate clients to fight a war of attrition
with the bots; the legitimates can afford to keep retrying
whereas the bots have a more limited bandwidth budget.

We will argue that using bandwidth as a constraint is,
in some ways, more natural than other DDoS defenses
(see §2.1,§6). Of course, it raises important issues, such
as the apparent abuse of a communal resource (the net-
work) and how to control congestion. In later sections,
we discuss these questions and show how to integrate
net-work into today’s applications. For now, we defer
these issues to outline and analyze an idealized version
of net-work.

1Laurie and Clayton [17] argue against proof-of-work as a spam
defense; in the appendix, we say how their work relates to our proposal.



B

g
good

bot

good server

C

(a)

g ! r
good

bot

good

thinner

B

server

g

(b)

Fig. 1: An attacked server, B + g > C, (a) without net-work (b) with net-work. Net-work requires every client to spend bandwidth;
good clients can afford this price. The traffic from good clients is shaded, as is the portion of the server spent on their requests.

2 Overview and Analysis of Net-work
A particularly problematic aspect of current DDoS at-
tacks is that a small number of bad clients can deny ser-
vice to a far larger number of legitimate clients. This de-
nial happens because each bad client may make requests
at rates far outstripping normal clients. At the same time,
we observe that some limiting factor must prevent the
bad clients from sending even more requests—otherwise,
they could deny service more effectively with fewer ma-
chines. We posit that in many cases, this limiting factor
is bandwidth and that bad clients exhaust all their avail-
able bandwidth generating spurious requests for service.
In contrast, good clients who spend substantial time qui-
escent are likely using only a small portion of their avail-
able bandwidth.

We aim to change this balance by increasing the band-
width required for a request to reach a server under at-
tack. Such a change ought to decrease the number of re-
quests sent from a (currently maxed-out) bad client that
reach the server, while good clients with spare bandwidth
will hopefully be able to absorb the cost.

2.1 Idealized Net-work
We first discuss an idealized approach to net-work and
later describe extensions to make it more realistic. While
net-work applies to a variety of servers, the idea is best
illustrated with simple request-response servers where
each request is cheap for clients to issue but expensive to
serve. Real-world examples include single-packet Web
requests, load-balancing DNS servers used by content
distribution networks, and NFS servers.

Suppose the server has the capacity to handle requests
at some known rate C, which is larger than the rate g at
which “good” or legitimate clients submit requests. At
the same time, a set of “bad” or attacking clients sub-
mits requests at rate b. Good clients may be denied ser-
vice when g + b > C; often, b � C. Let G and B de-
note the total bandwidths (measured in requests per time
unit) available to the good and bad clients. (G and B are
not physical link capacities but rather “disposable band-
width”, reflecting constraints like the need for bots to

avoid detection.) We pessimistically assume that the bad
clients spend everything they can, i.e., that b = B. On the
other hand, we posit that G � g, i.e., that the good clients
actually have substantially more bandwidth to spend on
the given service than they are using to submit requests.

Figure 1(b) shows an idealized implementation of net-
work. First, a thinner (which for now we assume is a sin-
gle machine but will generalize later) is a front-end to
the server. It winnows traffic from the inbound rate to
C by randomly dropping excess requests.2 Second, the
thinner does not drop requests silently—rather, on each
drop, it sends a synchronous “please retry” message to
the client, causing the client to retry the request, i.e., to
do more net-work.

This scheme builds on the well-known principle of
shedding requests to cope with overload, but with a cru-
cial difference. Today, when a good client fails to get a
response, it retries, often with human involvement and
always after a lengthy timeout. With net-work, however,
a client retries automatically as soon as it gets the “please
retry”. Since this call to retry usually occurs within one
round-trip, the legitimates can dramatically increase their
retry rates and drown out the attackers.3

Below we derive the expected number of retries, r,
that good clients will need to do, and we show that r
automatically changes with the attack size. For now, ob-
serve that r can be viewed as a price, with bandwidth as
the currency, and that the thinner does not communicate r
to the clients—instead, good clients keep resending until
they get through. The “natural” emergence of this price,
we argue, contrasts with other currency-based schemes.
With other currencies, the server must check clients’ pay-
ment (e.g., by verifying a puzzle solution) and also must
report an explicit price (e.g., by sending a puzzle with a
certain degree of hardness) or have the clients guess the
current price. See §6.1 for more comparison.

2C need not be known; however the details of this case are beyond
this paper’s scope, so we assume throughout that C is known.

3One reason for long timeouts and exponential backoff in current
retry methods is congestion control; we show in §3.1 how clients per-
form proper congestion control by using these explicit “please retries”
to distinguish between server overload and congestion.

2



2.2 Analysis and Requirements
We now consider the price, or expected number of retries,
r, for legitimate clients. Observe that the thinner, which
needs to know only C, admits incoming requests with
probability p to make the total load reaching the server
C. Legitimate clients thus have to retry r = 1/p times
on average before getting through. The “bad load” that
actually reaches the server reduces from B, the attackers’
full budget, to Bp. Thus, the thinner’s dropping policy,
combined with the fact that good clients retry their “good
load” of g until getting through, results in the equation
g + Bp = C, which implies r = 1/p = B/(C − g). Note
that r changes with the attack size, B.

For net-work to be most useful, legitimate clients
must be able to afford the inflation of their requests, i.e.,
gr must be smaller than G, the total bandwidth avail-
able to the good clients. Plugging r into the inequal-
ity gr < G yields a server provisioning requirement:
C > g(1 + B/G). This requirement can be explained as
follows: to use net-work, the server must have enough
capacity to serve both the good clients, g, and the dimin-
ished bots, B(g/G). The bots originally sent at rate B, and
good clients originally used a fraction g/G of their band-
width. Thus, from the server’s perspective, each bot has
become only as threatening as a good client; a bad client
can no longer amplify its impact on the server. In partic-
ular, if each individual bad client has the same amount of
bandwidth as each individual good client, then, from the
server’s perspective, net-work makes every bot look like
a good client. From the network’s perspective, net-work
makes every good client look like a bot in terms of the
number of packets sent.

2.3 When is Net-work Useful?
Net-work is only needed if g + B > C and can only pre-
vent overload when C > g(1 + B/G). If G � B then
the required over-provisioning (relative to the good load
g) is minor. If G ≈ B then the server has to be over-
provisioned by some small multiple of g, which may not
be feasible in some situations. If G � B then C must be
roughly gB/G, which is far larger than what is needed
for the legitimate load (by a factor of B/G) but is far
smaller than the capacity (g + B) that would have been
needed to absorb the attack without net-work (by roughly
a factor of g/G). However, even if the server is under-
provisioned, the fraction of service spent on good re-
quests goes from g/(g+B) without net-work to G/(G+B)
with net-work. Because we expect that G � g always
holds, this change represents a significant improvement
even in the case of enormous attacks.

The requirement that the server be large for net-
work to guarantee service to all legitimate clients may
seem unreasonable, but it applies to all currency-based
schemes: a server unprepared to treat every bot as a sin-

gle legitimate client can always be overloaded (see §6.1).
Indeed, one can do better only by explicitly distinguish-
ing legitimate users from bots, which may not always be
feasible (see §6.2).

3 Toward Practical Net-work
The idealized solution in the previous section made sev-
eral unrealistic assumptions:

A1 The network, excluding all access links, has infinite
capacity and never becomes congested.

A2 The thinner is provisioned to have infinite capacity,
i.e., its access link and processing capacity allow it
to respond to every arriving request.

A3 The latency from retrying requests is not problem-
atic.

A4 The server does the same amount of work for each
request.

In this section, we address these assumptions in turn.

3.1 Effects on the Network
Assumption A1 is obviously wrong, and we now discuss
how to account for limited bandwidth. When a client re-
tries aggressively, it should perform proper congestion
control. Fortunately, the thinner’s “please retry” message
gives the necessary feedback to uphold the principle of
packet conservation: the client retries only in response
to this message, and the thinner sends the message only
when it receives a request. If the thinner does not receive
a request, or if the thinner’s message is lost, then the
client must back off because the loss could have been due
to congestion. The details of the back-off depend on the
transport protocol; UDP-based RPC (e.g., DNS) would
have a multi-second back-off, while a TCP connection
between client and thinner would automatically ensure
correct congestion response.

For this congestion-controlled approach to thwart
DoS attacks, the thinner’s incoming and outgoing links
need to be uncongested. Otherwise, legitimate clients
will back off, ceding the server to attackers. Below, in
§3.2, we say how to provision the thinner accordingly.

By congesting intermediate links, attackers can cer-
tainly cause legitimate clients to back off in response
to network congestion. However, net-work neither intro-
duces nor facilitates such link attacks: they can and do
happen today. (Of course if net-work is effective in pre-
venting server attacks, it might cause attackers to turn to
link attacks instead, but these will be no more harmful
than they currently are.) One might object that net-work
increases the overall traffic load significantly. However,
only traffic involving a server under attack actually ex-
pands; if, as we expect, the fraction of such servers at any
time is small, then the overall traffic increase is small.

3



3.2 Provisioning the Thinner
Because clients treat unanswered requests as in-network
congestion, clients’ requests must not be lost at the thin-
ner. The thinner must therefore have enough bandwidth
and processing power to send “please retry” signals in re-
sponse to all arriving requests, both adversarial and good
(and the good traffic is inflated from retries). However,
the owners of most servers cannot afford a host with
this much processing power and connectivity. Instead,
a cost-effective solution is for groups of servers to ag-
gregate, sharing a thinner. Data centers today co-locate
Web servers, with traffic to these servers taking com-
mon links; thus, a thinner could be shared there. More
generally, a server could buy “thinning” from a provider,
which in turn can use an overlay. In this case, protected
servers would need to filter traffic not vetted by the thin-
ning service; servers with thin access links would need
router support for this filtering. We leave the detailed de-
sign of such an overlay-based thinning service—which
is similar in spirit to [2, 16, 22]—to future work.

3.3 Latency
In the idealized solution, a client’s expected latency is
r round-trips between it and the thinner. There are two
problems: the latency is large, and it has high variance
(≈ r2 RTTs) because of the random process. To address
both problems, the thinner can announce r to the client,
which then sends r−1 retries over a reliable, congestion-
controlled stream. After the client sends these r − 1 re-
tries, the thinner passes the client’s request to the server.

With this approach, the thinner must compute the
price r explicitly. One possible price computation is to
divide time into epochs and in epoch t to charge rt =

It−1
C ,

where It−1 is the inbound request rate. (It−1 = Bt−1+grt−1,
but the thinner does not know the contribution from each
term.) In the simple case when Bt is constant (e.g., attack-
ers spend all disposable bandwidth), we can prove that rt
converges to the price from §2.2, r = B

C−g . If attackers
modulate their traffic, the price can fluctuate. To prevent
attackers from gaming the scheme, we propose to mea-
sure It over a random number of past time epochs, leav-
ing a detailed investigation of this issue to future work.
Observe that this deterministic price preserves the “natu-
ralness” of bandwidth as currency: the price is estimated
directly from the incoming packet rate.

If the thinner can signal only “please retry” (rather
than an amount, r−1), it can still enforce r retries, which
reduces the variance from the idealized solution.

3.4 Servers with Unequal Tasks
Assumption A4 is not true in general. For servers whose
work is not constant for each request, net-work, as de-
scribed so far, will rightly crowd out adversaries, but the
few adversarial requests getting through may consume

<head>

<meta http-equiv="refresh" content=0>

</head><body>Please wait.</body>

Fig. 2: HTML refresh can implement the “please retry” signal.

much of the server’s resources. This problem is not spe-
cific to net-work; Web services—either unprotected or
protected with other DDoS prevention schemes—already
have this problem.4

To protect such servers with net-work, the server’s
owner must choose: either pessimistically “charge” for
every request as if it were the “hardest”, or price requests
differentially. With the former, the server must be pro-
visioned as though every request were hard. This choice
results in over-provisioning in the common case when
the server’s load is a proper mix of requests.

With differential pricing, if the thinner can discern the
difficulty of requests, and if the load profile (i.e., what
fraction of requests have a given difficulty) when the
server is not under attack is known, the thinner can ex-
tract payment “up-front”. The thinner simply drops in-
coming requests at rates to preserve the profile. If the
thinner cannot discern the difficulty of requests, then the
server should demand ongoing retries while serving the
request, being prepared to abort if it does not receive re-
tries. To have a price emerge naturally, the thinner can
again divide time into epochs and demand the “natural”
price in each epoch (as in §3.3). However, there are many
details to work out on how to implement such a scheme,
and we will be investigating them in future work.

4 Deployment and Applications
We now show how net-work fits into several network ap-
plications, requiring few or no client or server changes.

4.1 Protecting a Web Server
The thinner here is a front-end proxy to the server that
replies to requests with a simple “HTML refresh” page,
as in Figure 2. This page is the “please retry” signal
since the meta line causes the HTML client to send an-
other HTTP request immediately. The request-retry pro-
cess is repeated until the proxy probabilistically admits
the client or extracts an explicit price, at which point the
proxy relays the client’s original request to the server.

This approach requires the client to wait several
round-trips. That latency may be a few seconds but may
still be much better than an overloaded server under at-
tack. If a server operator wants to further reduce latency
for clients, the thinner can send an HTML page with mul-
tiple embedded objects, the number of objects reflect-
ing the current price. The client would have to retrieve

4Even with CAPTCHAs, one could hire thugs or cheap labor to
solve them and to then submit very expensive queries to a Web site.

4



each of those objects before getting service. Or, the thin-
ner can cause the client to run JavaScript that submits a
lengthy POST, the size reflecting the desired payment.
Observe that these approaches implement the idea from
§3.3 of communicating an explicit price, and they also
respect congestion control.

4.2 Protecting UDP-based RPC Systems
A UDP-based RPC system can use net-work by adding
the “please retry” message to the published interface. A
richer modification is to ask the client to “retry r − 1
times”. Now, the client would have to implement con-
gestion control while sending those retries “at once”; in
practice, the client could use a congestion manager [6] or
DCCP [15].

The legacy DNS protocol can yield the desired be-
havior: the thinner issues a DNS referral to itself for a
name with many components, the number of components
reflecting the desired price. After the referral has been
resolved, the thinner sends the request to the protected
DNS server. DNS servers that might need such protec-
tion are those doing non-trivial work for each client,
e.g., load-balancing mappers used by content distribu-
tion networks. We note that with this approach, any
distributed system with “request referrals” can use net-
work—possibly with no client changes.

5 Critique and Objections
We posited that attackers’ bottleneck resource is upload
bandwidth, and our premise is that the scarce server re-
source is computational (e.g., CPU or database license).
If we are wrong—which we plan to check with further
study—the analysis in §2.2 still applies (B and G can
refer to download capacity, C to the server’s outbound
bandwidth), though the “please retry” must instead be a
request for the client to download something, e.g., a large
dummy object.

We now state what we view as the two most serious
objections to net-work. First, clients with low outgoing
bandwidth will be penalized with longer latencies. This
bias against low-bandwidth clients arises in part because
the range of bandwidths is significant (and larger than
the range of memory speeds, used in computational work
schemes). Second, net-work will cost clients money if
their ISPs charge per byte. We do not yet have satisfac-
tory responses to these objections.

6 Net-work Compared to Other Defenses
6.1 Relation to Currency Schemes
In some currency-based approaches, the price r for each
request is stated explicitly; in others [28], service is auc-
tioned off so that the price is discovered dynamically. In
our context, the price, r retries, also emerges dynami-
cally, as showed in §2.2. The analysis presented there ap-

plies to any other currency; it shows that if good clients
can afford to pay the currency at rate G while bad clients
can afford B, then one can limit requests into the server
to rate g(1 + B/G) while still giving service to legiti-
mate clients. Furthermore, all currency schemes have the
properties stated in §2.3, namely that the scheme is most
effective when the server is provisioned for the above rate
and when G � B—but that the scheme is still useful
when these requirements are not met.

In this paper, we proposed bandwidth as a resource
with G � B. We do not claim that it is strictly better
than all other proposals, but we do think that it is a par-
ticularly natural currency, as argued in §2.1. Extending
the arguments there, we note that if the price in another
currency is wrongly set, causing the server to drop excess
demand, then the client must adjust to pay a higher price
(e.g., by solving a harder puzzle [28]) and must then send
a retry. In other words, bandwidth always plays a role in
currency-based schemes. Also, under net-work, clients’
work is observable; in contrast, puzzles might be broken,
and the server cannot tell when such breakage happens.

We do not know of another proposal to use bandwidth
as a currency. Gligor [11] does observe, however, that
client retries and timeouts require less overhead while
still providing the same qualitative performance bounds
as proof-of-work schemes. Because the general approach
does not meet his more exacting performance require-
ments, he neither suggests asking clients to retry aggres-
sively, nor considers the mechanisms and extensions in
§3–4, nor explores the ramifications of actually deploy-
ing the approach in today’s Internet.

6.2 Human Attention and Other Defenses
Whereas currency-based defenses grant some access to
bots, schemes [11, 14, 22] that use CAPTCHAs [27] to
tell apart bot and human grant no access to bots when the
server is heavily loaded. These solutions are not right for
our purposes because they assume an express preference
for human clientele. Also, giving humans a CAPTCHA
requires a behavioral change, yet many humans (26%,
in [14]) may not want to make this change. Kill-Bots [14]
strives to address these limitations by first trying to iden-
tify bots—defining a bot as a source IP address that re-
tries too many times without answering a CAPTCHA—
and then filtering them out, at which point the server will
no longer be loaded and any legitimate client can gain
access. Kill-Bots can redress the biases above under the
assumptions that the server is properly provisioned, that
bots can be identified by their retry pattern, and that each
bot can receive traffic at no more than a few IP addresses.

For lower-level DDoS defenses not based on currency
or human attention, see the survey by Mirkovic and Rei-
her [21] and the bibliographies in [14, 22, 29].

5



7 Conclusion
Attackers are now consuming expensive server resources
in ways that mimic legitimate users. The frustration of
server owners is palpable, yet their options are paltry:
overprovision vastly, adopt a bias toward humans an-
swering CAPTCHAs, yield to extortion [23, 26], or de-
mand that clients somehow pay for access. We have taken
the last approach, and we proposed bandwidth as the cur-
rency. Bandwidth’s advantage is simplicity and deploy-
ability. Its disadvantage (besides those in §5) is that it
is not a fully local resource, unlike the CPU in proof-of-
work. Nevertheless, viewing backbone bandwidth as free
may be a reasonable first approximation (see §3.1).

This view—coupled with defending servers by asking
good clients to crowd out attackers—may look like In-
ternet vigilantism. However, net-work upholds important
principles (e.g., respect for congestion control and limit-
ing clients’ claims on servers). Thus, we believe it mer-
its consideration by the community and investigation by
us. Building on our initial backward-compatible design
for the Web and DNS, we plan to conduct measurements
to check our premises, estimate typical values of B and
G, further develop a control scheme to estimate the retry
price dynamically, experiment with a working prototype,
and incorporate net-work into other legacy systems.
Acknowledgments
We thank J.D. Zamfirescu for his contributions in discus-
sions of this work. Excellent comments by David Ander-
sen, Russ Cox, Nick Feamster, Jaeyeon Jung, Brad Karp,
Maxwell Krohn, Karthik Lakshminarayanan, Rodrigo
Rodrigues, Sara Su, and Mythili Vutukuru improved this
paper. This work was supported by the NSF under grants
ANI-0225660 and CNS-0520241, by an NDSEG Gradu-
ate Fellowship, and by British Telecom.

References
[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber.

Moderately hard, memory-bound functions. In NDSS, 2003.
[2] D. G. Andersen. Mayday: Distributed filtering for Internet

Services. In USITS, Mar. 2003.
[3] Arbor Networks, Inc. http://www.arbornetworks.com.
[4] T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authentication

with client puzzles. In Intl. Wkshp. on Security Prots., 2000.
[5] A. Back. Hashcash.

http://www.cypherspace.org/adam/hashcash/.
[6] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated

congestion management architecture for Internet hosts. In
SIGCOMM, Aug. 1999.

[7] D. J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.html.
[8] Criminal Complaint: USA v. Ashley, Hall, Schictel, Roby, and

Walker, Aug. 2004. http://www.reverse.net/operationcyberslam.pdf.
[9] C. Dwork, A. Goldberg, and M. Naor. On memory-bound

functions for fighting spam. In CRYPTO, 2003.
[10] C. Dwork and M. Naor. Pricing via processing or combatting

junk mail. In CRYPTO, 1992.
[11] V. D. Gligor. Guaranteeing access in spite of distributed

service-flooding attacks. In Intl. Wkshp. on Security Prots.,
2003.

[12] J. Ioannidis and S. M. Bellovin. Implementing pushback:
Router-based defense against DDoS attacks. In NDSS, 2002.

[13] A. Juels and J. Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In NDSS,
1999.

[14] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale:
Surviving organized DDoS attacks that mimic flash crowds. In
USENIX NSDI, May 2005.

[15] E. Kohler, M. Handley, and S. Floyd. Datagram congestion
control protocol (DCCP). draft-ietf-dccp-spec-11.txt, IETF draft
(Work in Progress), Mar. 2005.

[16] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica.
Taming IP packet flooding attacks. In HotNets, Nov. 2003.

[17] B. Laurie and R. Clayton. “Proof-of-Work” proves not to work;
version 0.2, Sept. 2004.
http://www.cl.cam.ac.uk/users/rnc1/proofwork2.pdf.

[18] R. Mahajan et al. Controlling high bandwidth aggregates in the
network. CCR, 32(3), July 2002.

[19] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz.
Mitigating distributed denial of service attacks with dynamic
resource pricing. In Proc. IEEE ACSAC, Dec. 2001.

[20] Mazu Networks, Inc. http://mazunetworks.com.
[21] J. Mirkovic and P. Reiher. A taxonomy of DDoS attacks and

DDoS defense mechanisms. CCR, 34(2), Apr. 2004.
[22] W. Morein et al. Using graphic turing tests to counter automated

DDoS attacks against web servers. In ACM CCS, Oct. 2003.
[23] Network World. Extortion via DDoS on the rise. May 2005.

http://www.networkworld.com/news/2005/051605-ddos-extortion.html.
[24] E. Ratliff. The zombie hunters. The New Yorker, Oct. 10 2005.
[25] SecurityFocus. FBI busts alleged DDoS mafia. Aug. 2004.

http://www.securityfocus.com/news/9411.
[26] The Register. East European gangs in online protection racket.

Nov. 2003.
http://www.theregister.co.uk/2003/11/12/east european gangs in online/.

[27] L. von Ahn, M. Blum, and J. Langford. Telling humans and
computers apart automatically. CACM, 47(2), Feb. 2004.

[28] X. Wang and M. Reiter. Defending against denial-of-service
attacks with puzzle auctions. In IEEE Symp. on Security and
Privacy, May 2003.

[29] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting
network architecture. In SIGCOMM, Aug. 2005.

Appendix: Proof-of-Work for Spam Control
Laurie and Clayton [17] argue that proof-of-work for
spam control—wherein the sender attaches to each e-
mail a proof that it spent cycles on that e-mail and the
receiver checks this proof—is “not a viable solution to
the spam problem” [17]. Given their analysis, we must
ask why bandwidth is a viable DDoS defense. A compre-
hensive answer is outside our scope; two general obser-
vations follow. First, Laurie and Clayton’s security anal-
ysis assumes a goal of reducing spam to 1% of legitimate
mail. For DDoS, our goal need not be as stringent: we
believe server operators would be happy if their servers
spent less than 10% of their resources on bots. Given this
order-of-magnitude difference, we conjecture that there
is headroom between what legitimate clients are limited
to and what they actually want to spend. Second, we fur-
ther conjecture that most legitimate clients’ use of upload
bandwidth on DDoS-prone services (versus on peer-to-
peer applications) is relatively rare and could thus expand
without significant collateral damage.

6


