
Rate Guarantees and Overload Protection in
Input-Queued Switches

Hari Balakrishnan, Srinivas Devadas, Douglas Ehlert, and Arvind
Sandburst Corporation, Andover, MA 01810, USA

Abstract— Despite increasing bandwidth demand and the sig-
nificant research and commercial activity in large-scale Terabit
routers for multi-gigabit/s links, many current switch designs do
not provide adequate support for rate guarantees. In particular,
designs based on the popular combined-input/output-queueing
(CIOQ) paradigm have unpredictable performance despite im-
plementing sophisticated scheduling schemes on egress links,
because the crossbar arbitration between ingress and egress links
is done without regard to desired rate guarantees or prevailing
traffic conditions. This paper describes the design of an input-
queued switch system and its associated arbitration and rate
allocation algorithms that achieve both absolute rate guarantees
and proportional bandwidth sharing even under overloaded or
adversarial traffic. Our algorithms are simple and scalable and
require a switch speedup of two to provide rate guarantees; we
give the theoretical justification and report on simulation results
that justify our claims. A semiconductor chipset based on variants
of these algorithms for routers with an aggregate capacity of 160
Gbps with links up to 10 Gbps is now commercially available,
and a second-generation chipset supporting 640 Gbps will be
available soon.

I. INTRODUCTION

This paper considers the problem of providing minimum
rate guarantees and proportional bandwidth sharing for traffic
aggregates in an input-queued switch. These rate guarantees
must be guaranteed even in the face of denial-of-service (DoS)
attacks, worm-triggered traffic floods, and traffic flash crowds
to suddenly-popular services, all of which cause dramatic
overload in switches. An important goal of this paper to
provide such overload protection.

Most modern routers use a crossbar-based packet switch
with an arbitration algorithm that dynamically selects ingress
to egress connections.1 Because a purely output-queued switch
requires significant switch speedup (explained below), most
popular current designs use some form of combined in-
put/output queueing (CIOQ).

Traditional CIOQ switches have large packet buffers (often
on the order of 100-250ms times the line rate) at both
the ingress and egress line cards. The two packet buffers
decouple the problems of fast switch scheduling and achieving
QoS: input-queueing and fast crossbar arbitration achieve high
speeds, while running weighted fair queueing (WFQ) [1] or
deficit round robin (DRR) [2] at the egress link provides
QoS. Unfortunately, because packet buffer sizes are on the
order of several Gigabytes per multi-Gbps link, the two
stages of buffering significantly increase router cost and power

1We use the terms “input” and “ingress” interchangeably; likewise, “output”
and “egress”.

consumption compared to a router with only one stage of
buffering [3], [4]. Worse, even with two stages of packet
buffers, we show in Section III that these switches do not offer
sufficient overload protection for rate guarantees when the
arriving traffic overloads an egress link for extended periods
of time.

This paper describes algorithms for an input-queued switch
with speedup 2 that achieve our goals. The key idea is to inte-
grate switch crossbar arbitration with a bandwidth allocation
algorithm that dynamically apportions bandwidth to queues
in the system. Our arbitration algorithm requires only simple
maximal matchings within each time slot and is both fast and
scalable. In our approach, packets only cross the switch shortly
before they exit the system, allowing us to dispense with deep
packet buffers and QoS scheduling at the egress. Moreover,
because rate guarantees are considered before sending packets
across the switch, adverse traffic patterns do not disrupt rate
guarantees.

We have also developed a distributed bandwidth allocation
algorithm that uses traffic arrival and service rate information
gathered on each ingress line card to dynamically determine
how much bandwidth to allocate to groups of queues spread
across different ingresses, and to apportion this allocation to
the individual queues. The algorithm supports flexible sharing
of excess bandwidth concurrent with, but independent of,
minimum rate guarantees. Our results show that by allocating
bandwidth among queues in the system only once every few
thousand time-slots, the system remains resilient to short-term
burstiness while providing long-term guarantees, enabling us
to achieve our performance goals while minimizing the cost
of the hardware implementation of the algorithm.

Based on variants of the algorithms presented in this paper,
we have fabricated a semiconductor chipset and developed
a reference switch design supporting 16 10 Gbps links for
an aggregate switch bandwidth of 160 Gbps. The chipset is
commercially available. A second-generation chipset based
on these algorithms, which will be available soon, supports
an aggregate switch bandwidth of 640 Gbps. We present the
theoretical justification for our algorithms as well as simulation
results that show that rate guarantees are met even under
adverse overload conditions.

II. RELATED WORK

Numerous papers have been published over the past several
years on switch scheduling, rate and delay guarantees, and
output emulation (e.g., [3], [5]–[9]); we only survey the most

relevant related work here. As in most switch modern systems,
we use the idea of virtual output queueing (VOQ) [10],
[11] with per-egress queues at each ingress to avoid head-
of-line blocking. Using a fluid model, Dai and Prabhakar
(and Leonardi et al.) recently showed that for CIOQ switches
with speedup 2, any maximal matching algorithm delivers a
throughput of 100% if arrivals follow the strong law of large
numbers and links are not overfed [9], [12]. We use this
important result in our work.

Many previous schemes to achieve bandwidth QoS (e.g.,
WFQ) on CIOQ switches without egress-link QoS function-
ality require complex crossbar arbitration in each time slot,
which often renders them impractical. In addition, many
schemes cannot handle overloaded traffic or time-varying
arrival rates, and do not provide aggregate rate guarantees to
groups of queues spread across ingresses but sharing the same
egress. Typical approaches include multiple rounds of round-
robin with priority [13], maximum-weight matchings [11], or
stable matchings [14].

Based on Anderson et al.’s Parallel Iterative Matching (PIM)
[15], Stiliadis and Verma proposed a weighted variant called
WPIM to provide bandwidth guarantees in an input buffered
crossbar switch [16]. Stephens and Zhang [17] describe a
distributed implementation of several packet fair queueing
(PFQ) algorithms, some of which give rate guarantees but may
not yield 100% throughput. McKeown’s iSLIP algorithm [13]
is an iterative, round-robin algorithm that can achieve 100%
throughput for uniform traffic. All of these approaches work
in some cases, but generally have problems in coping with
traffic overload, time-varying arrivals, and large differences in
weights.

Kam and Siu [14] present a credit-based scheme to obtain
100% throughput and to provide minimum-rate guarantees
with a speedup of 2. Their scheme performs a stable match-
ing in each time-slot. Because each queue must be given
an explicit guarantee, the scheme cannot provide aggregate
guarantees for groups of queues. They also do not discuss the
nature of the guarantees when a queue’s arrivals vary in time.
We use their credit scheme as inspiration in developing the
“coloring” process that makes our proposed “tiered” maximal
matching arbitration work correctly.

Hui [18] and Anderson et al. [15] specify a method for rate
guarantees based on the Slepian-Duguid method that requires
no speedup in theory; if each queue has a guaranteed rate, then
this method pre-computes a switch schedule for each time-
slot, which can be used until the guaranteed rate assignments
change (which might happen, for instance, when the arrival
rates change). Although implemented in some commercial
chipsets, this approach has some shortcomings. First, without
switch speedup, it cannot guarantee 100% throughput for a
mix of guaranteed and non-guaranteed traffic; second, the
bound on the number of iterations of the method to produce
an assignment is not small, so in practice one only gets an
approximation whose properties are not clear; third, and most
serious from a router scaling standpoint, the amount of state
required in the arbiter is proportional to the product of the

number of virtual output queues and the number of time-slots
to compute the schedule over, which is often large.

Chang et al. describe scheduling algorithms based on a
classical matrix decomposition result of Birkhoff and von
Neumann [19], [20]. This approach requires knowledge of the
arrival rates, and uses a complex, off-line

��������� 	�

algorithm

to obtain 100% throughput without switch speedup. The main
problems with this scheme are the state requirements and
the need to perform a complex calculation when arrival rates
change.

Koksal et al. develop and prove the correctness of a method
called rate quantization to convert the set of desired rates into
a certain discrete set in such a way that the complexity and
the rate guarantees can be greatly improved over a Birkhoff
switch [21]. Moreover, quantization enables them to develop
a Slepian-Duguid-like algorithm that enables the switch to
both adapt to dynamically varying traffic and simplify switch
scheduling.

Priority modulation is a scheme implemented in some
commercial switches. It is a distributed scheme that measures
egress transmission rates to control the ingress rates in a
feedback control loop. When an egress determines that an
ingress has received more than its allocated rate, it sets the
ingress to a low priority; otherwise, it is at a high priority. In
each time slot, egresses make grants to ingresses by preferring
higher priority requests to lower ones; when granted a request,
an ingress can send any packet it wants. Although this scheme
copes better with overload than traditional CIOQ switches, it
has significant problems. It does not have any known provable
properties under overload, and it is unknown if a speedup of 2
suffices to meet guarantees. It also requires more than a simple
FIFO at the egress links. Finally, the time-scales over which
it provides protection are longer than the per-time-slot control
of our solution.

Chiussi et al describe a scheme for scalable matching. Their
scheme does not protect against overload and assumes an
admissible traffic pattern that does not overfeed any egress or
ingress link. While no guarantees are given for speedup less
than 2, simulations indicate that for many types of admissible
traffic patterns a speedup of 1.1 suffices to obtain maximum
throughput [22].

III. SYSTEM ARCHITECTURE

A. Model

We consider an
����

switch employing VOQ with only
ingress packet buffering. Each ingress has about 100 or 200ms
(a typical Internet path’s round-trip time) of buffering. At each
ingress, there are ����� queues per egress, corresponding to �
different configurable classes of service. In practice � is on the
order of several thousands. Each ingress line card has a lookup
and classification module that classifies each packet to one of
these � VOQs, and enqueues the packet on it. Each egress line
card has only a FIFO buffer, with capacity for only a small
number of packets relative to the ingress packet memory (a
few tens of KBytes versus many hundreds of MBytes).

Crossbar
Arbitrator

Bandwidth
Allocator

Lookup +
Classify

Lookup +
Classify

Lookup +
Classify

Lookup +
Classify

G1

G1

G1

G2
G3

G3

G3

G

H

I

J

A

B

C

D

Crossbar

Fig. 1. Switch architecture showing a ����� switch. Each ingress has ����
VOQs. The arbiter matches ingresses to egresses in each time-slot. The

bandwidth allocator periodically determines and updates the rates assigned to
each queue.

Time proceeds in units of a time-slot of duration TS seconds.
In each time-slot, each ingress is connected to at most one
egress for unicast traffic, and no egress is connected to more
than one ingress. The switch fabric has speedup � , which
means that at most

� �
	��	 TS

bits can be sent across each
connected ingress-egress pair in each time-slot, where � is
the line-rate of each ingress and egress link in bits/second.
“TSbits” is the number of bits that can arrive in one time-slot
at an ingress; it is equal to

� ��	 TS

bits. We note that for
throughput guarantees this is equivalent to a speedup model
where the crossbar switch computes � matchings in each time-
slot with ��	 TS bits being sent across after each matching.
Our model may result in slightly increased delay. On the other
hand, it makes for a more relaxed hardware implementation
of the matching because the entire time-slot can be used to
compute a matching.

We consider only switches that operate on fixed-sized
packets in this paper, where each packet is TSbits in length.
Our algorithms work and the results of this paper hold even
for variable-sized packets, but the router requires additional
machinery to handle packet fragmentation.

Network operators can configure the router to provide
service level agreements (SLAs) for traffic aggregates. Each
SLA operates on a queue group, defined as a set of queues in
the system. Each queue belongs to exactly one queue group.
The SLA takes the form of a minimum rate guarantee for the
traffic aggregate defined by the corresponding queue group.
If the minimum rate guarantee for queue group � is ��� and
the aggregate arrival rate to the queue group is ��� , then the
router ensures that the rate ��� provided to the queue group is at
least ����� � ������� �
 , and does not exceed �!� . Figure 1 shows an
example where the ingresses A through D each have queues
destined for egress G. The figure shows three queue groups,
G1, G2, and G3, and their constituent queues.

Defining SLAs in terms of queue groups rather than in-

dividual queues facilitates flexible arrangements of queues
into groups. The simplest queue group is a single queue.
Another useful example is when an egress link’s bandwidth
is divided amongst queue groups whose constituent queues
belong to different ingresses. We constrain all the queues
within a queue group to share the same egress link. This is not
the most general definition, since this constraint disallows a
queue group from having queues destined for different egress
links. However, it still permits a large number of practical
SLAs.

B. Motivation

Our approach is motivated by the observation that traditional
CIOQ switches with speedup 2 do not provide adequate rate
guarantees when egresses or ingresses are overfed. When
overfed, packets may end up going across the crossbar for
queues that have already received more than their guarantees,
even when there are packets on other queues that have not yet
received their guarantees. This problem is not easily solvable
using simple round-robin strategies for the crossbar—what is
needed is a crossbar scheduling scheme that uses information
from the ingress queues in making matching decisions in each
time-slot.

For example, consider a switch with speedup 2 where
three ingress links with arrivals at 1 Gbps all have packets
destined for a 1 Gbps egress link. Suppose our goal is to
guarantee rates of 0.8 Gbps, 0.1 Gbps and 0.1 Gbps to
these ingress link queues. In the traditional CIOQ+egress-link-
scheduling design, even assuming the crossbar does round-
robin scheduling, each of these queues gets 0.67 Gbps of its
traffic to the egress, since the crossbar has speedup 2 and the
aggregate traffic arrival into the egress link can be 2 Gbps. At
this stage, it is too late to ensure the specified rate guarantees,
because only 0.67 Gbps instead of 0.8 Gbps was allowed for
the first queue.

Allocating the crossbar in a weighted round-robin fashion
with weights proportional to the rate guarantees does not work
when packet arrivals are variable. In general, we can make the
above example much worse, especially as switch sizes scale
up.

C. Tiered Maximal Matching

Rather than schedule the crossbar without regard to band-
width requirements, our scheduling scheme pays attention to
whether queues have received their allocated rates or not.
We are able to do this scheduling using a simple two-tier
maximal matching strategy. The idea is to have the ingress
line cards inform the arbiter of whether the allocated rates for
each queue have not yet been met, in which case the queue is
hungry, or if they have, in which case the queue is satisfied.
The arbiter uses this information to produce a conflict-free
matching of ingresses to egresses in each time-slot. It first
does a maximal matching on the hungry queues, and then
moves to the satisfied ones. We call this the HSA (hungry-
satisfied arbitration) algorithm. This scheduling scheme is
work-conserving and ensures 100% throughput across the

system, even if not all the bandwidth of an egress link has
been guaranteed.

To perform HSA, ingress line cards need to do more than
in traditional CIOQ systems. They implement a credit-based
scheme called CCU (conditional credit update) to decide
if a queue is hungry or satisfied. In addition, because the
actual rates assigned to a queue depend on the arrival rate
of packets into that queue as well as the arrivals to other
queues in the queue group located at other ingresses, they
monitor the arrival rate and periodically pass this information
to a bandwidth allocator. The bandwidth allocator implements
an algorithm called BAA (bandwidth allocation algorithm) that
determines the rate that should be allocated to each queue
such that the SLA guarantees are met and excess bandwidth
is shared properly. BAA updates each queue’s allocated rate
once every few thousand time-slots. The algorithms described
in this paper are correct as long as the allocated queue rates
do not “oversell” any ingress or egress link; i.e., the sum of
the minimum guarantees on any ingress or egress link is not
larger than the link’s line rate. Any reasonable configuration
satisfies this property.

D. Advantages and Limitations

Our approach has three advantages over conventional WFQ-
over-CIOQ designs. First, by assigning rates to queues dynam-
ically based on arrivals and SLA guarantees, and arbitrating
for crossbar bandwidth using HSA, our approach provides rate
guarantees and bandwidth isolation even under overload when
packet arrivals are not doubly substochastic. The tiered maxi-
mal matching required in HSA is simple and can therefore be
performed every time-slot (e.g., a few hundred nanoseconds)
even for large switches.

Second, our approach enables a more flexible de-
gree of bandwidth sharing than permitted by traditional
CIOQ+WFQ/DRR systems because it separates minimum
guarantees from excess sharing.

Third, our approach tightly integrates traffic management
and QoS scheduling, and requires only one stage of packet
buffering; the egress is a simple FIFO with space only for a
small number of packets.

Like conventional WFQ-over-CIOQ designs, our approach
does not give provable delay guarantees; however, in practice
simulations show good delay properties for our approach
because we use a token bucket scheme to determine if a queue
has obtained its guaranteed rate or not.

Finally, we note that any matching scheme can be used
in conjunction with the credit update and packet coloring
algorithms described in Section IV. Using these algorithms,
any maximal matching scheme with a crossbar speedup of
2 provides 100% throughput and rate guarantees, even under
traffic overload. Lower speedups may suffice to obtain rate
guarantees and 100% throughput for many types of overloaded
or doubly stochastic arrival patterns.

IV. HSA ALGORITHM

Each ingress line card keeps track of whether each of its
queues is “hungry” or “satisfied”; informally, a hungry queue

is one that has not yet received its allocated rate � , while a
satisfied queue is one that has received its minimum rate.

We define a backlogged queue to be one that currently has
at least �
	 TSbits bits enqueued, where � is the speedup of
the switch. A queue that has no data in it is called empty.

In each time-slot, each ingress provides the following infor-
mation to the crossbar arbiter:

1) A list of egress links for which some queue at the ingress
is hungry and backlogged.

2) A list of egress links for which some queue at the ingress
is satisfied and backlogged.

For the moment, ignore the details of how the ingress deter-
mines whether a queue is hungry or satisfied; for now, imagine
a scheme where the ingress monitors the service rate for each
queue and compares it with the allocated rate � for the queue.

At any given time, the FIFO buffer at an egress link may
be full and may not have enough space to accommodate the
bits that come across the crossbar from an ingress. If there
is no space at an egress, then no ingress should be matched
to that egress. To prevent this matching from happening, in
each time-slot, each egress informs the arbiter whether it is
eligible, i.e., whether it has enough buffer space available to
accept incoming data from an ingress.

In each time-slot the arbiter knows, for each ingress, the list
of hungry and satisfied ingress-egress pairs from among the
eligible egresses. The arbiter uses this information to produce
a maximal matching of ingress to egress links. The maximal
matching produced by HSA is not an arbitrary one; indeed,
an arbitrary maximal matching will not in general allow the
system to meet the rate guarantees for the queues. HSA
first produces a maximal matching by considering only the
hungry ingress-egress pairs. Then, from among the unmatched
ingresses and egresses (if there are any remaining), it produces
a maximal matching from the satisfied queues. The result is a
tiered maximal matching of the crossbar demand matrix, with
a satisfied ingress-egress pair matched together only if there
were no hungry matches for that ingress or egress.

A. Conditional Credit Update Scheme

Each ingress line card implements a conditional credit
update (CCU) scheme for each of its queues to decide if
the queue is currently hungry or satisfied. The input to CCU
is the rate � that has been assigned to this queue, based on
information computed by the bandwidth allocator (Section V).

Over time, a queue generally alternates between backlogged
and empty periods. Let the total amount of time spent by
the queue in the ���

�
backlogged epoch be � � and suppose

the rate allocated to the queue is � . With each queue, we
associate the notion of a credit, � . Informally, a queue’s credit
increments at a rate � as long as it is backlogged. Whenever �
bits are sent from the queue across the crossbar, � reduces by
� . A queue that meets its rate would have non-positive credit.
Figure 2 gives the pseudocode for the credit update algorithm
that operates on each queue.

Definition 4.1: Using the CCU procedure shown in Fig-
ure 2, if the credit value of a backlogged queue is strictly

PROCEDURE CCU(� � � � , pkt)
At beginning of each time-slot:
if (pkt arrives)

ENQUEUE(� � , pkt)
if (length(� �) ���)

��� � ���	� �
� � ���� ��	 TS
return;
At end of each time-slot:
sent � number of bits sent across crossbar

from VOQ on queue ���
if (��� ���������) // decrement only if queue is hungry

��� �����	� ��� ������� sent;
HUNGRY � NULL // queues with ��� credits
SATISFIED � NULL // queues with ��� credits
foreach backlogged queue � to egress link �

if (��� �������)
HUNGRY � HUNGRY ����� �

else
SATISFIED � SATISFIED �!��� �

�
Send HUNGRY and SATISFIED to arbiter
return;

Fig. 2. The conditional credit update (CCU) algorithm that runs on each
ingress line card. "�# is the ID of the VOQ where the packet pkt arrived and$ is the rate allocated to the queue.

greater than zero, the queue is called hungry. A backlogged
queue that is not hungry is called satisfied.

Definition 4.2: An
� ���

matrix % with elements � �'& is
called doubly substochastic if

1) (*)�+-,�/.�0 � �1& ��� , and

2) (� + ,&�.�0 � �1& � � .
If all the inequalities above are strict equalities, the matrix is
called doubly stochastic.

B. HSA with CCU Meets Rate Guarantees

At any time, CCU determines whether a VOQ is hungry
or satisfied. CCU can also be conceptually viewed as a token
bucket filter applied to the VOQ which colors packets hungry
or “H” depending on the credit value. We can view CCU as
conceptually equivalent to the following process.

1) Conceptually partition each ingress VOQ into two
smaller queues: the hungry “H” queue, and the pending
“S” queue.

2) In each time-slot, prior to the arbitration decision, if the
credit value for the VOQ is positive, and the pending
queue is non-empty, move the packet at the head of the
pending queue to the hungry queue. Then, decrement the
credit value by the number of bits in the packet. (In this
conceptual process, we decrement credits when packets
leave the pending queue as opposed to decrementing
when packets are sent across the crossbar.) Otherwise,
the packet at the head of the pending queue remains
there.

Packets in the hungry queue are said to be colored “H”.
The intuition behind why the combination of HSA and CCU
provides rate guarantees is that CCU may be viewed as
coloring the packets it sees as they arrive, in a manner that
ensures that the rates of all the “H” packets in the system
across all the ingresses form a doubly substochastic matrix.

Lemma 4.3: The
� � �

matrix, 2 , formed by the rates at
which CCU applied to all the VOQs colors packets as “H”, is
doubly substochastic, if the rate guarantees themselves form a
doubly substochastic matrix.

Proof: The rate at which CCU colors “H” packets for
a VOQ is limited by the rate guaranteed to the queue, when
averaged over all durations when the VOQ is backlogged. Over
a large enough time duration � , a VOQ between ingress � and
egress) colors no more than � �1& � packets as “H”, where � �'&
is the VOQ’s guaranteed rate. Since the matrix of � �1& values
is doubly substochastic, so is 2 .

Theorem 4.4 (Theorem 2 in [9]): If the arrivals to a
switch with speedup 2 are doubly substochastic, then the
switch can achieve 100% throughput with any maximal match-
ing arbitration.

Corollary 4.5: If the rate guarantee matrix is doubly sub-
stochastic, CCU on the ingress queues together with the HSA
algorithm for switch arbitration on an

� � �
switch with

speedup � �43 does not cause any “H” queue to grow
unbounded, and every credit value has a finite upper bound.

To see the intuition behind this result, consider any maximal
matching. Suppose the queue

� � �5)
 on ingress � for egress)
is hungry, i.e., � �1& ��� . If this queue is hungry in time-slot 6 ,
then HSA’s tiered maximal matching ensures that the quantity7 �1&98 +�: � � : � � : & in time-slot 6�� � cannot be larger, because
either queue

� ���;)
 sends ��	 TSbits of data, or some other queue
in row � or in column) sends this many bits of data. At the
same time, the sum of the credits for row � and column)
can grow by at most 2. This means that every queue either
eventually becomes satisfied or becomes empty.

Dai and Prabhakar [9] use this observation about
7 �'&

(for them the
7

is the sum of actual queue lengths with
doubly substochastic arrivals, not credits) to derive a Lyapunov
function < 8 + �'& � �1& 7 �'& . The same proof flow can be used
for our definition of

7 �1& to show that our equivalent < has an
upper bound, which implies that each � �1& has an upper bound.
This means that each queue receives its guaranteed rate.

This result shows that any strategy for determining whether
a VOQ is hungry or satisfied can be used in conjunction with
HSA, as long as the rate at which the strategy colors “H”
packets forms a doubly substochastic matrix across the

�>=
ingress-egress pairs.

1) Remarks on HSA: An easy and useful generalization
of HSA’s two-tiered matching is to have multiple levels in
the tiered maximal matching, where the above definitions of
“hungry” and “satisfied” are just two of the tiers. With this
generalization, the HSA algorithm will have as many steps as
there are total number of priority levels. This will allow for
delay-sensitive scheduling across the priority levels.

This generalization is different from standard approaches

of matching based on priority levels, because the mapping
between any queue and the “hungry” and “satisfied” levels
changes with time depending on the service received by the
queue.

2) Remarks on CCU: In Figure 2, a queue’s credits are
decremented after data is sent only when the queue is hungry
before the transmission and not when it is already satisfied.
The precondition to decrementing is not required to prove
asymptotic rate guarantees. However, if we did not decrement
conditionally, a queue’s credit might come down to a large
negative value, by virtue of transmissions done when it was
already satisfied and when the egress link wasn’t being con-
tended for by other hungry queues. Later, if the egress link
became a point of contention from other competing ingresses,
the queue with large negative credits may end up being starved
for long periods of time. Thus, we “forgive” transmissions
done during periods of little competition, and don’t hold that
against a queue.

Credits are incremented only when the queue is non-empty
and not otherwise. This is to avoid a queue that has had no
arrivals for a long time from obtaining a large positive bank
of credits, and using that later. Specifically, the times at which
credits get incremented affects the time-scales over which we
can claim that packets are colored “H” at a doubly substochas-
tic rate in the system. If we ensure that this happens only when
a queue is backlogged, then this double substochasticity holds
at all times.

We note that the pseudocode shown in Figure 2 may add
some latency to a packet that arrives on an empty queue
whose credits are at � � 	 TSbits, because the packet may
have to wait until the credit increases to � � for the queue
to be hungry. In that time, the queue may not get to send the
packet if there are other hungry queues for the same egress
elsewhere in the system. To counter this, we also allow a
queue’s credits to increment when the credits are negative,
regardless of whether the queue is empty or not. Again, this
does not affect the rate guarantee results proved in this section
but improves forwarding latency.

3) Egress FIFO: The proofs of this section work when the
egress link employs a simple FIFO across all queues, but do
not say anything about how much buffering is required at the
egress. One potential concern is whether a finite amount of
egress FIFO buffering causes the results to be invalidated. We
show an upper bound for the required egress FIFO size.

CCU ensures that hungry packets resemble a token bucket
whose drain rate is at most � � and whose bucket depth is� 8 � � TSbits bits. Supposing, for the moment, that only
hungry packets make it to an egress link that has � queues
feeding it, then a buffer of

� 	 � 	�� bits suffices because packets
also drain from the egress at a rate larger than + � � � . In fact,
it is even smaller because the crossbar constraint ensures that
all bursts cannot occur simultaneously; a simple modulation
scheme at an ingress link to prevent all its queues on the same
egress from bursting simultaneously ensures that the buffer
size needed is only

� 	 � bits, which is much smaller than
the ingress packet buffers that run into Gigabytes.

To achieve high utilization, we want to service satisfied
queues too. Satisfied packets do not go through the CCU
token bucket. Therefore, it is possible that satisfied packets
that make it through fill up the FIFO and block hungry packets
in succeeding time-slots. One approach to solve this problem
is as follows. Given an egress FIFO of size

���
, only service

satisfied queues if the amount of data in the FIFO is ���	�
 ,
where � is the speedup. If satisfied packets fill up this space,
the data will drain out in ���
�TSbits time-slots, which is exactly
the number of time-slots required for hungry packets to fill up
the buffer of size

���
.

V. BAA: BANDWIDTH ALLOCATION ALGORITHM

In Section III we defined and motivated the idea of queue
groups. Given an assignment of rates � to individual queues,
Section IV showed how the ingress line cards and arbiter
ensure that the assigned rates are met. This section presents
BAA, an algorithm that assigns these � values to the individual
queues.

Consider a queue group) that has been guaranteed a rate � &
in an SLA. Our goal is to ensure that we allocate the smaller
of the group’s demand2 and � & to the queue group, dividing
the allocation to the constituent queues in proportion to their
relative demands. Once bandwidth is assigned such that the
SLAs are met, some egress links may have excess bandwidth
available for queue groups to use (e.g., because some queue
groups don’t have enough current demand, or because not
all of the egress link’s bandwidth has been guaranteed).
BAA apportions the excess bandwidth on each egress link
in weighted-fair fashion to groups that have residual demand,
according to an excess allocation vector, � .

BAA ensures that the resulting matrix of � values to the
different queues is doubly substochastic, so that HSA can run
correctly. A static assignment of � values to queues based on
the SLA-guaranteed rates � does not work because we need
to both apportion bandwidth to the queues in the queue group,
and also ensure that queue groups with demand less than their
� relinquish the rate difference. Thus, BAA is an essential step
in our switch architecture to achieve rate guarantees, and not
just an optimization.

BAA solves the assignment problem by dynamically allo-
cating rates to queues in the system based on observed traffic
patterns. It collects information on traffic arrivals and queue
backlogs and periodically updates each ingress line card with
the rates it allocates for every queue in the system. We refer
to this fixed duration between rate updates as an epoch.

The duration of an epoch clearly has implications for both
the algorithm performance and hardware implementation. The
implementation benefits from a longer duration, as this reduces
the communications bandwidth necessary between chips and
the amount of logic necessary, since given enough time it is
possible to perform the major steps of the algorithm in serial
fashion. Our results show that the algorithm performs well over

2We don’t define term “demand” precisely at this stage, leaving that to
Section V-A. For now, think of “demand” as the arrival rate.

a large range of epoch durations, with an epoch duration on
the order of a few thousand time-slots giving results sufficient
to meet our performance goals. The hardware implementation
has therefore been optimized for cost, not speed.

Nonetheless, within the range of feasible values, a shorter
duration does moderately improve the algorithm performance,
and so the duration of an epoch in the implementation scales
with the total number of queues, groups, and ports used. We
consider this a worthwhile optimization as it does not incur
any additional hardware cost.

We start by describing an ideal BAA scheme that solves the
problem exactly. Then, we discuss a practical implementation
that approximates this ideal solution.

A. Demand Estimation

BAA requires each ingress line card to estimate and main-
tain arrival rate information for every queue, and periodically
send this information to the BAA module. Each ingress line
card estimates, for each of its queues, a long-term arrival
rate using a simple exponentially weighted moving average
(EWMA) filter, updating this estimate every epoch (���). If
% �1& is the arrival estimate for the queue on ingress � belonging
to queue group) , for which � �1& bits arrived in the previous
epoch, then

%��'& ����� �1&�� � � � � � ���
 %��'& � (1)

where � is the EWMA gain factor. The matrix of % �1& values
estimated using Equation 1 is ingress-substochastic, which
means that (� + & % �'& � 7 � , ingress � ’s line rate. We find
that a fixed value of � between 0.25 and 1 works well.

However, an EWMA estimator suffers from the problem that
a sudden traffic spurt takes several epochs to track, affecting
the responsiveness of the system and the resulting latency. The
problem is severe when a queue group with a large guaranteed
rate has had a low arrival rate that suddenly increases, because
the group has sufficient (sudden) demand that may take several
epochs to track. Queue backlog also accumulates when the
aggregate arrival rate to a queue group exceeds its SLA, and
some or all of the excess does not get serviced due to egress
contention. If not under a steady-state condition, decreasing
the EWMA gain factor creates a demand based on arrivals
with better memory of these previous arrivals, which could
not be used in the short term but should be used in the long
term. Increasing the gain factor, on the other hand, allows the
system to respond more quickly to a rapid increase in arrivals.

To combat this problem, we use a second component in the
demand estimate: the queue backlog remaining at the end of
the previous epoch. If the queue length at the end of an epoch
is � �'& and the egress line rate for group) is � , then the total
demand estimate is calculated as

� �1& 8 % �1& � � �1& � (2)

where
� �1& 8 � �'&�� � is the rate required to clear the backlog.

Thus, the total demand has an estimated part (% �'&) and a
deterministic part (

� �1&). The matrix of
� �1& values is not

ingress-substochastic in general if the
� �'& ’s are non-zero.

D_{ij}
Q_jL_i

Ingress
Nodes

Queue
Groups

S T

Ingress
Line rate L_i

Q_j = min(sigma_j,
sum_j D_{ij})

Demand D_{ij}

Fig. 3. Bipartite max-flow formulation of the bandwidth allocation algorithm
for arbitrary demand values.

This complicates the process of assigning doubly substochastic
� ’s to the different queue groups. The result of using both
components in the demand estimate is that the system becomes
more responsive to rapid changes in arrivals,

B. Satisfying Rate Guarantees

Given a matrix of demands
� �'& ’s, our goal is to assign

� �1& ’s to the queues such that all SLA guarantees are met. This
problem is equivalent to a max-flow problem on a bipartite
graph (Figure 3). One partition of the vertices corresponds
to the ingress line cards and the other partition corresponds
to the queue groups. The capacity of the edges connecting
ingress � to queue group) is

� �1& . We add a source vertex
� and a terminal vertex � to the graph. The capacity of the
edge from � to ingress � is

7 � , the line rate of that ingress.
The capacity of the edge connecting queue group) to � is
� & 8 � ��� � � & � + �

� �'&
 . Any feasible flow on this graph is
ingress-substochastic by construction.

Lemma 5.1: If the guaranteed rates � & ’s on any egress link
do not oversell the link’s bandwidth, and if the aggregate sum
of egress link rates does not exceed the aggregate sum of
ingress link rates, then the max-flow solution on the bipartite
graph in Figure 3 saturates all the) - � links if and only if all
queue group SLAs are met.

Proof: The key to the proof is to observe that the capacity
of each) - � edge is picked as the smallest value that will
satisfy the SLA. By definition, if every) - � link is satisfied,
then all SLAs are met. For the “if” part of the claim, suppose
the max-flow assignment of � �1& values does not satisfy some
SLA. This means that the max-flow is smaller than the sum
of all the) - � capacities. By construction, the sum of these
capacities is the smallest cut in the graph, so this assignment
of � �1& ’s cannot be the max-flow since it violates the max-flow-
min-cut theorem.

Figure 4 shows the pseudocode of the BAA meeting rate
guarantees.

The two vertex partitions in the bipartite graph have very
different numbers of vertices (e.g., 64 ingresses and 30,000

PROCEDURE BAA SLA(% ,
�

, � ,
7

)
// Matrix % is from Equation 1,

�
from Equation 2

// �9& 8 � ��� � �& � + �
� �1&
 ; 7 � 8 line rate of ingress �

(ingresses � � 7 �
� � 7 � ; �

(queue groups) � want & � � & ; �
(ingresses � , queue groups) �

� �'& � � ��� � % �'& ��� ���� � � ��� � &
 ;
want & � want& � � �1& ;7 �
� � 7 �

� � � �'& ;
�
(queue groups)

if
�
want& ���
 // SLA rate not yet met
(ingresses � � � ��'& � � �'& � � �'& ; � ;

(ingresses ��� 7 �� ��� , groups)	� want& ��� �
flow �1& � MAXFLOW(� � � 7 �� � � ��) � want& � � � � ��1& �);
� �'& � � �1& � flow �1& ;

�
return
 8 � � �1&�� matrix;

Fig. 4. Meeting SLA guarantees in BAA.

queue groups), so unlike a standard
������

bipartite max-
flow we can use a push-relabel method whose complexity is����� = ���

, where
� �

is the number of vertices in the smaller of
the two vertex partitions and

is the number of edges in the

graph.
Depending on the switch size and the epoch duration,

computing the max-flow exactly may not be possible. To make
this more efficient, we observe that if the matrix of

� �'& values
is ingress-substochastic, then we can start by pushing

� �1&
units of flow through the edges without overfeeding any of the
ingresses, dispensing with a full-blown max-flow computation.
The result is a feasible solution to the max-flow. It is easy to
find an ingress substochastic demand matrix—simply use the
% �1& ’s calculated in Equation 1 without using the

� �1& estimates
from Equation 2.

After this is done, many of the queue groups are likely to
be saturated, so we temporarily remove these vertices from
further consideration. For the remaining vertices, we create a
subgraph of the original graph of Figure 3 where the assigned
feasible capacities are subtracted from the links they traverse.
This graph is likely to be substantially smaller than the original
graph, and an approximate or exact max-flow algorithm can
run on this.

Section V-D outlines a practical hardware implementation
that approximates the ideal BAA described above.

C. Sharing Excess Bandwidth

BAA allocates the unallocated (excess) bandwidth on each
egress link to the � queue groups using that link in weighted
max-min-fair fashion according to an excess allocation vector
� 8 � � 0 � � = ������� � ���9� . The input to this step includes the
remaining demand (after BAA SLA() runs) on each queue
group,

� �
�'& 8 � �1& � � �1& and the excess bandwidth on each

egress link.

If the
� �
�1& values are such that + & � � ��'& � � �1&
 � 7 � for

each ingress � , then this is a relatively straightforward problem
because we don’t have to worry about maintaining ingress-
substochasticity of the final allocations. In this case, if

� �& 8
+ �
� �
�'& is the aggregate demand of queue group) for the

excess bandwidth on egress link � , and if there are � queue
groups sharing that link, then the excess bandwidth on that link
� �: is easy to allocate in weighted max-min-fair fashion to the
queue groups. It is possible to implement this in

��� ���������

time per egress link.

In general, if we include the backlog estimates
� �1& in� �'& , the

� �
�1& ’s can’t simply be shared as explained previously

because ingress-substochasticity will not hold in the final
solution. Our solution to this is to modify the

� �
�1& estimates

to ensure that ingress substochasticity holds (this takes time
linear in the number of queue groups) and then run the excess
step.

Finally, BAA updates the allocations of rates to the individ-
ual queues in a queue group in proportion to their

� �
�'& values.

D. An Implementation

We have developed a hardware implementation of BAA
that departs from the ideal maxflow-based solution in that it
first forms an ingress-substochastic demand matrix from both
the arrivals and backlog. The SLA guarantees can then be
met without the max-flow step, since the backlog component
is already included in the demand. Starting with an ingress-
substochastic demand also means that excess allocation can
proceed directly from the demand remaining after meeting
SLA guarantees. (The ideal solution must make the remaining
demand ingress substochastic at this point.)

This approach dramatically reduces the logic and epoch
duration, at the expense of accuracy. In general, making the
demand ingress substochastic in an accurate manner is a non-
trivial problem, and requires information from other nodes in
the system. Instead, to get the backlog component of demand
for each queue, we simply take the remaining line rate after
summing the arrivals for all of the queues, and allocate it to
the queues in proportion to their lengths:

� & 8 % & �
� � � � 6 � � � &

+ & � � � �6 � � � &
"! � ���
#
&

% &
 (3)

The main drawback of this approach is that the process
of making the demand ingress-substochastic may take de-
mand away from some egresses, keeping some egress links
underallocated. Reducing the demand in this manner does not
take into account the contribution from other ingresses, or
the bandwidth of the egress link to which the queue data is
destined. That means that sometimes the backlog component
will raise the demand above what a queue group can allocate,
essentially wasting demand at that ingress that another queue
may have been able to use.

Another difficulty with this approach is that it is possible
for a queue that is consistently serviced below its arrival rate
to claim an inordinate share of the backlog. To prevent this

problem, the maximum demand that a queue may request
above its arrival rate in any epoch is limited to a fixed amount
above the rate allocated to that queue in the previous epoch.

These drawbacks may occasionally result in a queue group
getting less than its SLA-specified guarantees even when
there is adequate demand, or may lead to bandwidth sharing
amongst queue groups different from the excess allocation
vector,

Despite these shortcomings, this approach does not lead to
under-utilization. This is because the HSA crossbar arbitration
is work-conserving, and an egress link is kept idle only if there
are no packets in the system for that egress.3

VI. SIMULATION RESULTS

We present several simulation results in this section. We use
a switch simulator that faithfully emulates the actual switch
system down to the granularity of a single time-slot. This
emulation includes the behavior of the line cards, the crossbar
and its arbiter, the communication between the line cards
and the arbiter, and the communication with the bandwidth
allocator. Our simulator has been used for both hardware
development and performance evaluations, and the results are
a good indicator of system performance.

We have run simulations for a large number of different
configurations and report on the results of one set with

� 8
3�� line cards, speedup 2, link speed of 10 Gbps, TSbits =
1000 bytes, 100ms of ingress line card buffering, and an
egress FIFO size of 100,000 bytes. Our simulator includes
a traffic generator that generates synthetic traffic based on
different distributions. We use it primarily to evaluate how
well our architecture can handle overloads and how accurate
the achieved bandwidths are relative to guarantees. We also
evaluate BAA using Internet backbone traffic traces collected
at a public peering point.

A. HSA Performance

The theoretical justification of HSA’s correctness is an
asymptotic rate result, and it is important to understand the
time-scales over which HSA works well. We are interested in
how accurate the achieved rates are over different measure-
ment time-scales, and in how good the overload protection
offered by HSA’s tiered maximal matching is.

To answer these questions, we first need to define a metric
for accuracy. Over any period of time � , if the bandwidth
guarantee for a queue group is � , then the number of bits
sent should be at least ��� if the queue group had sufficient
demand. If over this period of time the group managed to send
��� bits, then we define

error
�
�

 8 ����� � � � �	�

��� ���
 � (4)

We show the results for an
� � �

switch (
� 8 3
�)

configured with 24 different queue groups per egress link.

3The product does allow network operators to set upper rate limits, which
would of course prevent any enqueued packets from being sent if the rate
limit were already met.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 50 100 150 200 250

E
rr

or

Normalized window size (x * (L/sigma) time-slots)

sigma=2000M
sigma=1600M
sigma=267.5M

sigma=171.25M
sigma=136.25M

sigma=28.75M
sigma=22.5M

sigma=11.25M

Fig. 5. Error in the non-overfed case as a function of time-window � for
9 queues with bandwidth guarantees between 2 Gbps and 11 Mbps.

Each queue group is a single queue, and no two queue groups
sharing an egress are on the same ingress. Queue group � ,
comprising the queue on ingress � , has a guaranteed rate of
3 � � � ��
 � Gbps, for � � �9� 3
� . These queue groups share
an egress link of

7 8 ��� Gbps. The sum of the guarantees of
these 24 queues is 9.94 Gbps; we introduce another queue on
one of the ingresses with guaranteed rate 60 Mbps, so all 10
Gbps are guaranteed. The incoming traffic on each group is
a constant bit rate (CBR) with a packet interarrival duration
determined by the queue’s offered load. This simulation also
tests HSA’s ability to work across three orders of magnitude
of rate guarantees—the highest rate is 2 Gbps, the lowest is
11 Mbps.

1) Non-overfed case: In the first experiment, the system
is not overfed—the incoming traffic on each queue is a CBR
that is equal to the guaranteed rate and does not overfeed any
egress link. As expected, the guarantees are met. The errors
for 9 of the queues are shown in Figure 5, which plots the
error of different queues, calculated as the mean of different
non-overlapping windows over an entire trace lasting about
250,000 time-slots. The � -axis in these plots is the window
size normalized by

7 � � rather than raw time-slots. For any
queue that has a guarantee of � , the average number of time-
slots over which one time-slot’s worth of packets leaves the
system is

7 � � . Hence the natural time-scale over which to
evaluate error is to normalize the measurement window in
terms of

7 � � . The figure shows that for this wide range of
guarantees, a window size of about 40 is enough to bring the
error down to smaller than 1%. As expected, larger windows
cause the error to go down towards 0.

The low-rate queues have less than 0.5% error even for
small windows. For the larger-rate queues, the error is about
4% at very small windows, but this happens because some
small windows may not have enough arrivals (and the error is
computed assuming that at least ��� bits are available). The
interesting experimental result is that we have always been

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 10000 20000 30000 40000

B
its

 s
er

vi
ce

d

Timeslot

Fig. 6. Time sequence of serviced bits in the overfed case for the 24 different
queue groups. The ��� ���

Gbps egress link has an aggregate offered load of
216 Gbps, but is still able to isolate queue groups according to the configured
guarantees.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 50 100 150 200 250 300 350 400 450 500

E
rr

or

Normalized window size (x * (L/sigma) time-slots)

sigma=2000M
sigma=1600M
sigma=267.5M

sigma=171.25M
sigma=136.25M

sigma=28.75M
sigma=22.5M

sigma=11.25M

Fig. 7. Error in the overfed case as a function of time-window � for 9
queues with bandwidth guarantees between 2 Gbps and 11 Mbps.

able to obtain an error of less than 1% when the window size
is about ��� 	 7 � � time-slots, over a wide range of � values in
many different configurations.

2) Overfed case: Our goal is to “slam” the switch with sig-
nificantly higher traffic than it can handle without substantial
queueing or dropping and see if the configured guarantees are
met. We use the same setup as in the previous case, except
that each of the 24 queues has traffic arriving at 9 Gbps, all
intended for a 10 Gbps link. This is substantial overload—
216 Gbps arriving for a 10Gbps link. This extreme setup is
intended to investigate and demonstrate that HSA’s simple
tiered-maximal matching with CCU is robust.

Figure 6 shows the sequence of packets that leave the egress
link for the 24 different queues. The isolation between the
queues and the difference in rates is clear. We observed similar
results when the queues in the different groups share ingress

links.
Figure 7 shows the error as a function of the normalized

time window. The accuracy of HSA’s guarantee depends on
the degree of overload, but even in this extreme simulation
most of the queues are within 1% of the rate guarantee within
about 100 normalized time windows. As in the underfed case,
the errors converge faster to 0 for lower-rate queues compared
to higher-rate ones, suggesting that the errors when the number
of queues is large may in fact be smaller.

B. BAA Performance

The performance of BAA depends on its ability to ac-
curately estimate demand in the face of variation in traffic
arrivals. To evaluate this, we analyze real-world traces. These
traces are from a public peering link on the west coast of the
United States. We analyzed data collected at different times in
December 2002 and January 2003 from an OC-12 link (622
Mbps). We show the results of demand estimation over 36,000
time-slots (about 6 minutes) of one of the traces here. The
results for longer periods of time and across different traces
from this link are similar.

We conduct a pessimistic evaluation of BAA’s ability to
track variations in traffic by assuming that the traffic stream
belongs to a queue group whose guaranteed bandwidth is
infinite, so any arrivals should immediately be serviced. Since
BAA estimates demand and ensures that the allocated rate �
does not exceed the estimate, an estimator that underestimates
the arrival rate will cause unnecessary delays. We note that
this evaluation reflects both the ideal BAA and the hardware
implementation, because the demand estimation is identical in
both methods.

We logged the backlog remaining at the end of every 10ms
epoch for two arrival estimators: pure EWMA with � 8 � �'3�
(Equation 1) and the EWMA-backlog sum (Equation 2). The
performance of the EWMA+backlog scheme was substantially
better; the average queue backlog remaining at the end of each
epoch because not enough service was given to the queue was
3,431 bytes in this case, compared to 49,921 bytes for pure
EWMA. On a different trace collected on a fast Abilene link,
the average backlog for EWMA was 85,734 bytes compared
to 5,729 bytes for the combined estimator.

Figure 8 shows the backlog between epochs 21,500 and
22,500 for the first trace discussed above. It shows a sudden
spike in the arrival rate, and the resulting backlog at the end
of that epoch. Including the backlog in the demand estimate
quickly eliminates the backlog.

VII. CONCLUSION

This paper described the design of an input-queued switch
system and its associated arbitration and rate allocation algo-
rithms that achieve both absolute rate guarantees and propor-
tional bandwidth sharing even under overloaded or adversarial
traffic. Our algorithms are simple and scalable and require a
switch speedup of 2 to provide rate guarantees. Our simulation
results showed the robustness of the HSA to overload and a

0

100000

200000

300000

400000

500000

600000

21600 21800 22000 22200 22400

Q
ue

ue
 s

iz
e

re
m

ai
ni

ng
 (

by
te

s)

Epoch (10ms)

EWMA + backlog
EWMA alone

Fig. 8. Including the backlog handles sudden arrival rate spikes.

trace analysis showed the effectiveness of BAA in tracking
arrival changes.

A semiconductor chipset that implements variants of these
algorithms for routers with an aggregate capacity of 160 Gbps
with links up to 10 Gbps is now commercially available,
and a second-generation chipset supporting 640 Gbps will be
available soon.

VIII. ACKNOWLEDGMENTS

The authors benefited from technical discussions with sev-
eral members of the Sandburst’s Hibeam team, including
Krste Asanovic, Stephen Bailey, Ken Dennen, Nick Horgan,
Leo Keegan, Jongpil Lee, Tony Martuscelli, Rishiyur Nikhil
(whose help with the simulations we also gratefully acknowl-
edge), Daniel Rosenband, Karen Schramm, Jacob Schwartz,
Eric Spada, Joe Stoy, and Scott Winterble. We thank Vince
Graziani and Gary Kraemer for their encouragement and
support of this work. We also thank the anonymous reviewers
for their useful comments on this paper.

REFERENCES

[1] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulations of a
Fair-Queueing Algorithm,” Internetworking: Research and Experience,
vol. V, no. 17, pp. 3–26, 1990.

[2] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” in Proc. ACM SIGCOMM, Cambridge, MA, 1995, pp.
231–242. [Online]. Available: citeseer.nj.nec.com/shreedhar95efficient.
html

[3] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
Output Queueing with a Combined Input Output Queued Switch,” IEEE
Journal on Selected Areas in Communication, vol. 17, pp. 1030–1039,
1999.

[4] S. Iyer, R. Zhang, and N. McKeown, “Routers with a Single Stage of
Buffering,” in Proc. ACM SIGCOMM, Pittsburgh, PA, Aug. 2002, pp.
251–264.

[5] B. Prabhakar and N. McKeown, “On the speedup required for
combined input and output queued switching,” Stanford University,
Tech. Rep. CSL-TR-97-738, 1997. [Online]. Available: citeseer.nj.nec.
com/prabhakar97speedup.html

[6] A. Charny, “Providing QoS Guarantees in Input Buffered Crossbar
Switches with Speedup,” Ph.D. dissertation, Massachusetts Institute of
Technology, 1998.

[7] P. Krishna, N. Patel, A. Charny, and R. Simcoe, “On the Speedup
Required for Work-conserving Crossbar Switches,” IEEE Journal on
Selected Areas in Communication, vol. 17, pp. 1057–1066, 1999, Pre-
sented at the ���

�
IEEE/IFIP IWQOS’98, May 1998.

[8] I. Stoica and H. Zhang, “Exact Emulation of an Output Queueing Switch
by a Combined Input Output Queueing Switch,” in Proc. IWQoS, Napa,
CA, May 1998, pp. 218–224.

[9] J. G. Dai and B. Prabhakar, “The throughput of data switches with
and without speedup,” in Proc. INFOCOM (2), 2000, pp. 556–564.
[Online]. Available: citeseer.nj.nec.com/dai00throughput.html

[10] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[11] N. McKeown, V. Ananthram, and J. Walrand, “Achieving 100% through-
put in an input queued switch,” in Proc. INFOCOM (2), 1996.

[12] E. Leonardi, M. Mellia, M. Marsan, and F. Neri, “Stability of Maximal
Size Matching Scheduling in Input-Queued Cell Switches,” in Proc. In-
ternational Conference on Communications (ICC), vol. 3, New Orleans,
LA, 2000, pp. 1758–1763.

[13] N. McKeown, “The iSLIP Scheduling Algorithm for Input-Queued
Switches,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp.
188–201, Apr. 1999.

[14] A. Kam and K.-Y. Siu, “Linear Complexity Algorithms for QoS Support
in Input-Queued Switches with no Speedup,” IEEE JSAC, vol. 17, no. 6,
pp. 1040–56, June 1999.

[15] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-Speed
Switch Scheduling for Local-Area Networks,” ACM Transactions on
Computer Systems, Nov. 1993. [Online]. Available: citeseer.nj.nec.com/
anderson93high.html

[16] D. Stiliadis and A. Verma, “Providing Bandwidth Guarantees in an
Input-Buffered Crossbar Switch,” in Proc. INFOCOM, Boston, MA,
April 1995.

[17] D. Stephens and H. Zhang, “Implementing Distributed Packet Fair
Queueing in a Scalable Switch Architecture,” in Proc. INFOCOM,
1998. [Online]. Available: http://www-2.cs.cmu.edu/ � hzhang/papers/
INFOCOM98b.pdf

[18] J. Hui, Switching and Traffic Theory for Integrated Broadband Networks.
Boston, MA: Kluwer Academic Publishers, 1990.

[19] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On Service Guarantees for
Input Buffered Crossbar Switches,” in IWQoS’99, 1999, pp. 79–86.

[20] ——, “Birkhoff-von Neumann Input Buffered Crossbar Switches,”
in Proc. INFOCOM (3), 2000, pp. 1614–1623. [Online]. Available:
citeseer.nj.nec.com/article/chang00birkhoffvon.html

[21] C. Koksal, R. Gallager, and C. Rohrs, “Rate Quantization and Service
Quality over Single Crossbar Switches,” in Proceedings of IEEE INFO-
COM, Hong Kong, 2004.

[22] F. M. Chiussi, A. Francini, G. Galante, and E. Leonardi, “A Novel
Highly-Scalable Matching Policy for Input-Queued Switches with Multi-
class Traffic,” in Proc. IEEE GLOBECOM Conference, 2002, pp. 2281–
2286.

