
Issues in Object-Based Notification

Paul Kim and Dorothy Curtis
paulhkim@alum.mit.edu, dcurtis@lcs.mit.edu

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, MA

Abstract

Integrating notification with shared memory applica-
tions is an interesting problem. This paper looks at imple-
menting notification in a shared memory, object-oriented,
distributed transaction environment.

1 Introduction

As software applications move from stand-alone entities
to interdependent components in increasingly distributed
systems, software designers must focus more attention on
integrating distributed components. A common scenario
involves one application waiting for another to update or
modify the value of some shared object. An example of this
is a flight arrival notification system, in which a user calls
in to an application requesting to be notified once the flight
arrival time reaches a given threshold. The application, in
turn, waits for some third party application to modify the
time-to-arrival value before calling the user back. Assum-
ing the application is connected to the rest of the system via
a network connection, the question arises as to how the ap-
plication can be made aware of a change to time-to-arrival.

One possible solution is to have the client poll the system
to check whether the value of time-to-arrival has changed.
Repeatedly making calls over a network connection to in-
quire about the value could potentially waste network band-
width or be expensive. Alternatively, having the system no-
tify the waiting client application upon change of time-to-
arrival requires only one network call at the precise time
that the value is actually modified. provides two benefits
over polling: preservation of network bandwidth as well as
providing a new value at time closer to that at which the
value was changed. Combining notification with polling
improves the latency at which data is refreshed.

We seek to provide the notification mechanism within
The remainder of the paper is as follows: Background

on notification and invalidation will be in Section II. Sec-

tion III will provide an overview of the implementation en-
vironment. Section IV will discuss the details and imple-
mentation details of the notification mechanism. Section
V will explore related work, and Section VI will conclude
with possible future projects that may benefit from notifica-
tion.

2 Background

This section describes the issues and concepts involved
in notification. Further, we examine the definition of noti-
fication itself, and identify the applications that use notifi-
cation as well as the various types of notifications that are
possible.

The discussion of notification for this paper will be in the
context of a multi-user, multi-application distributed envi-
ronment. We will assume that all applications run on top of
a shared database, and are connected to the database via a
network connection. Furthermore, we will assume that ap-
plications work on locally cached copies of data from the
database. Notification refers to the update of an applica-
tion’s data with the changes made by another application.
Notification is application specific. Each application run-
ning on the database may be interested in notification for
different subsets of the centralized data objects. In some
cases, a multi-cast notification may be appropriate. For the
purposes of this paper, however, notifications will use a one-
message-per-application approach. The types of applica-
tions for which notification is provided for has an impact
on the design and implementation of the mechanism. Two
distinct types of applications exist for notification: waiting
and non-waiting applications.

2.1 Waiting Applications

Waiting applications are those applications that, while
waiting to be notified of a change, do not require any other
access to or modifications of data. The example of the flight

1

Proceedings of the Seventh International Database Engineering and Applications Symposium (IDEAS’03)

1098-8068/03 $17.00 © 2003 IEEE

arrival notification system mentioned in the Section I is such
an application.

2.2 Non-waiting Applications

Non-waiting applications encompass those applications
that actively read and write data, while expecting some lo-
cal data to be updated. In non-waiting applications, the ben-
efit of notification is that applications can better ensure that
the data being used in a transaction is fresh, and thus the
result of the transaction is more likely to be valid. An ex-
ample of a non-waiting application that uses notification is
a calendar application that can be accessed by two different
parties, for example, a doctor and his secretary. In the event
where a secretary commits an appointment to a day on the
doctor’s schedule, that day becomes invalid to the doctor’s
application. Without notification, the doctor may not know
about the change until he tries to add another event to that
day, at which point, the transaction will abort, and he can
request the new copy of the day. In contrast, if the system
were to notify the doctor of the secretary-entered appoint-
ment before the doctor tried to modify the date, the doctor
would be aware of the change and be able to act accord-
ingly on a valid piece of data. In such cases, notification
can eliminate the need for unnecessary transaction aborts
by providing updated and valid copies of data.

2.3 Notification Propagation

There are three levels of the client to which the notifi-
cation message may propagate: the application cache, the
application, or the user. The application and its usage deter-
mine how far notifications must propagate for correct be-
havior. Generally, the more frequently that notifications
are expected, the less propagation is necessary. A mes-
sage that propagates to only the application cache results
in the cache updating the application’s data without the ap-
plication having any knowledge of a change. Applications
in which the rate of data change is extremely fast, such as
real-time stock quoting applications can assume that data is
constantly changing, thus do not need to be notified very
time a member of its cache is updated. Indeed, applica-
tion notification would be burdensome and not particularly
useful. Applications that explicitly wait for a change in
a specific piece of data, however, do require to be noti-
fied when the data is modified. Such applications require
application-level notification. For example, an application
that waits for a temperature to exceed a certain threshold be-
fore acting, must know when the notification is received to
be able to proceed. Blindly updating the application’s data
is not sufficient. Propagating the notification message all
the way to the user consists of the application conveying an
update through its interface to the user. This is needed when

changes may impact the user’s interaction with his/her ap-
plication. An application that would need to notify its user
is the aforementioned calendar application.

2.4 Notification and Polling

While notification may exist as an alternative to polling
in situations where conservation of network bandwidth is
desirable, situations in which this is not an issue could cou-
ple notification with polling to improve the likelihood of
obtaining a fresher value of a particular piece of data. For
example, if an application were to poll a database for an up-
dated value every 20 seconds, the value of the data could
be as old as 20 seconds by the time the application had
access to the value (disregarding the network latency). If
polling were then augmented by a notification mechanism,
we could ensure the following: in the case that the notifi-
cation is successfully transferred to the application via the
network, the application would have access to the new up-
dated value faster than through simple polling.

3 THOR: the Implementation Environment

The implementation of notification in this paper uses
THOR[3], a distributed object-oriented database system.

The THOR environment provides objects. Each object
has a unique identifier and a set of methods for access and
modification. The architecture is in the form of a client-
server model that maintains the persistent state of each ob-
ject, see Figure 1. All persistent objects are stored at the
Object Repository (OR), which is the server side of THOR.
The OR contains a root object, through which all objects are
reachable. The OR is responsible for checking the validity
of any potential transaction and committing the transaction
if valid. The client side of THOR consists of a Front End

OR

FE FE

Application Application

Figure 1. Thor Architecture

(FE), which serves as a local cache for the application that
runs on top of it. An application’s FE contains copies of
a subset of the objects stored at the OR. The application
accesses objects as if they were local objects. The FE/OR
infrastructure provides, essentially, a shared memory model
for accessing the database objects. Commiting changes to
the objects is managed through transactions. request on to

Proceedings of the Seventh International Database Engineering and Applications Symposium (IDEAS’03)

1098-8068/03 $17.00 © 2003 IEEE

the OR. The FE and OR communicate through a network
connection. If an application requires an object that is not
stored at its FE, the FE can request the object from the OR,
which will send the object back to the FE. The application
can then read and/or modify the object. The application in-
vokes the FE interface to commit a transaction, and the FE
will send the commit message on to the OR. If the OR de-
termines the transaction is valid, it will commit the updated
values, otherwise it will return an abort message back to the
FE. The application then determines the appropriate course
of action in the case of an abort, i.e, abort or retry. Ad-
ditionally, the OR sends invalidation messages to FE’s that
contain new values for stale copies of objects.

FE’s each have a Resident Object Table (ROT) that maps
an object id to a location in local memory, through a process
called swizzling.

The FE keeps track of an application’s transaction by
maintaining a Read Object Set (ROS), Modified Object Set
(MOS), and New Object Set (NOS). The NOS is made up of
those objects that are created during the course of the trans-
action. Each set consists of a list of the relevant objects.
some member in the MOS. When the application decides
to commit, the FE gathers the information from the MOS,
NOS, and ROS and sends a commit message to the OR.

The OR will determine whether or not to commit or abort
the transaction from the FE. For each FE, the OR keeps
track of which objects are stale. If the objects from the FE
commit message are contained in the set of the FE’s invalid
objects, the FE’s transaction is aborted, and an abort mes-
sage is returned to the FE.

The OR uses an invalidation mechanism to inform the
FE about stale objects. Upon receiving a valid commit from
one FE, it sends invalidation messages to all other FE’s that
have copies of the committed object cached. Upon receipt
of an invalidation message, the FE will check to see if any
of the members of its MOS or ROS match the object that
was referred to in the invalidation message. If it does, the
current transaction is aborted.

4 Design and Implementation

Sections II and III introduced the concept of notification
and the THOR database system. This section describes the
enhancements made to the THOR architecture that allow
applications to be notified of changes made to relevant ob-
jects.

4.1 Enhancing the OR for Notification

Additional data structures are required to allow the OR
to implement notification. A class called Notification set is
created to allow a collection of object ids to be stored. Noti-
fication set’s store the object ids for which an FE wishes to

be notified. Two sets of Notification set’s are kept. The first,
called wanted objs contains those objects for which the FE
desires notification. The other, called notify objs represents
a subset of the wanted objs objects that have been modified
by the commit of another FE’s transaction.

The FE sends an FE recv notify msg to the OR to indi-
cate which objects’ modifications are of interest.

Once the OR has registered the FE’s requests for notifi-
cation it is ready to send the actual notification message. At
the appropriate time it creates an FE send notification msg
message. This message will contain the new value for each
object that has been modified and is on the FE’s wanted objs
list.

The notification mechanism that was implemented for
the purposes of this paper as described above has a poten-
tial scalability flaw that may be addressed in future work.
Currently, the OR loops through each FE and checks which
object ids are registered for notification, before sending out
the notification message. The data for notification is essen-
tially stored on a per-FE basis. In a scenario where there are
few objects shared across numerous FE’s, the performance
could potentially suffer. It seems a more efficient means
of notifying FE’s would be to design a data structure that
stores the notification configuration on a per-object id basis.

4.2 Enhancing the FE for Notifications

In order to request send a notification of changes to
a particular object, the FE creates a message of type
FE Send Notify. This message contains the object ids for
which the application wishes notification.

In handling notification messages from the OR, the goal
of the FE is preserve data consistency and correctness of
the system. This entails not only updating the values of
the modified objects, but also ensuring that transactions in-
volving modified objects are aborted. There are potentially
three situations in which the FE can pick up the notifica-
tion message: an explicit call by the application to check
for notification messages, a waiting mechanism in which
the FE waits on the network for any notification messages,
and a check for notification in the process of a commit by
the application, in which the contents of notification mes-
sages are checked to determine whether the transaction be-
ing committed is valid. An explicit check for notification
is initiated by the application running on the FE. A waiting
mechanism is also provided by the FE to “wait” for any no-
tification messages to appear on the network queue. Such
a mechanism is ideal for applications whose continuity de-
pends on receiving a notification message. The waiting can
be interrupted when either a message is received on the net-
work queue, or the application interrupts the wait process.
Allowing the wait to be interrupted enables the application
to perform transactions and process information. The third

Proceedings of the Seventh International Database Engineering and Applications Symposium (IDEAS’03)

1098-8068/03 $17.00 © 2003 IEEE

place where the notification messages are retrieved is when
a transaction commit is processed by the FE. If any of the
object ids contained in the notification message match any
of the objects in the transaction’s MOS or ROS, then the
contents of the transaction are invalid. The FE discontinues
the commit process before a commit message is sent to the
OR. Furthermore, the FE informs the application of the un-
successful commit attempt and provides object ids that were
modified from the notification message.

The FE stores any notification messages, but does not
update the values until a later convenient time. In order
to ensure that data for which notification messages are re-
ceived are not modified in the lag time between receipt and
update, the FE locks all the pages that were sent in the no-
tification message. Any subsequent access attempts to the
page result in aborting the transaction. As will be seen in
the next section, the pages are unlocked after the update is
completed.

4.3 Writing an Application to Use Notification

An application must explicitly request notification from
the central data repository for the relevant pieces of data.
When designing an application to receive and incorporate
notification messages, the responsibilities of the applica-
tion consistency are twofold. First, the application must
regularly check the network queue for the presence of no-
tification messages. Secondly, the application should cor-
rectly incorporate the messages. The application must reg-
ularly check for notification messages in order to realize
benefit from the notification mechanism. If an application
were to ignore notification messages until the time of trans-
action commit, the transaction could potentially be invali-
dated. For example, an application ”A” may be interested
in changes made to a member ”x” of its data set. A notifi-
cation message informing of a change to ”x” may be sent
”A”, but if the application does not check for the message,
then it may continue to perform invalid transactions on ”x”.
Upon attempting to commit the transaction, the application
will then be informed of the invalidity of its object set. The
application must check for notification messages in order to
avoid performing invalid transactions, thus realizing a key
benefit of the notification mechanism. Upon receiving the
notification messages, the application must then correctly
integrate the message into its own behavior. If the noti-
fication message is for data involved in an uncommitted
transaction, then the application must undo the results of
the transaction, while also informing the application user of
the invalidation if necessary. If the notification message is
for data that has yet to be accessed in a transaction by the
application, then the application can simply update the rel-
evant data without affecting the validity of its transaction.
Again, notifying the end user is an application-dependant

issue.

4.4 Application Support for Notifications

The degree of involvement of the application in support-
ing the notification mechanism varies significantly with the
type of application as well as the type of notification the
application is interested in. From a high level perspective,
the application identifies those objects for which it is inter-
ested in receiving notification messages. Upon receiving a
notification message from the OR, the FE updates the ob-
ject values as described in the previous section. A list of
the modified objects is passed back to the application layer.
At this point, the applications use of the modified orefs is
dependent on the context in which the application is used.
It can inform the user of the changes, or hide the changes
altogether. There are some situations, however, where the
application desires not only a single object, but any new
entities related to the object. For example, the calendar
application described earlier might request Notifcation for
modifications made to a single calendar object. It is reason-
able to assume that modifications could include adding a
notice or an object. Depending on the object representation
of the calendar, an added notice may be assigned a new oref
from that of the calendar itself. The application’s calendar
class, when requesting notification, must have knowledge of
which orefs will change when new objects are added and in-
clude those in the notification message. It is thus necessary
for applications, or some of their classes, to be aware of the
object representations to properly request notification. The
next section shows how the calendar application would be
modified to support notification.

4.4.1 Identifying the Calendar Objects to Notify

The Calendar application consists of a collection of cal-
endar objects. Each calendar object is a representation of
scheduled events for a given individual. Within the context
of the calendar application, we desire the ability to receive
notifications of modifications made to individual calendars.
The request for notification about a specific calendar is ac-
complished by deriving the oref of the individual calendar
object. This in itself, however, is not sufficient to achieve
successful update via notification. An oref is assigned to
each calendar object, as well as its member variables. The
items in the calendar object that represent each of the sched-
uled events are stored in an array called “Items”, which is
one of the calendar object’s member variables. “Items” is
itself a pointer to the array. By simply requesting notifica-
tion of changes made to the calendar object itself, objects
added to “Items” will not be included in the notification be-
cause although the contents of “Items” have changed, the
the array has not.

Proceedings of the Seventh International Database Engineering and Applications Symposium (IDEAS’03)

1098-8068/03 $17.00 © 2003 IEEE

Calendar root (oref = 2800)

Calendar 1 (oref = 2808) Calendar 2 (oref = 2820)

Array of items (Oref = 2809) Array of items (Oref = 2809)

Meeting
Time: 12:12:12
Day: 12-02-2002

Meeting
Time: 12:12:12
Day: 12-05-2002

Figure 2. Object Representation of Calendar
Application with two Calendars

It is thus necessary to send the oref of the array “Items”
along with the calendar object oref in the notification re-
quest message. Figure 2 displays the object representation
of a calendar application with two separate calendar objects.

4.4.2 Receiving Notification for Calendar Objects

In the calendar application, it seems reasonable to require
notifications of modified objects to be conveyed directly to
the user via the user interface. This is accomplished via
a notification dissemination mechanism within the appli-
cation. It is first necessary to identify all the areas within
the application that a notification message may be received.
As discussed earlier, the application can invoke a wait-for-
change as well as a direct request to check for notification
messages on the queue. The third area of notification receipt
is potentially after a failed commit. The FE is further mod-
ified to keep track of which objects were modified by noti-
fications. The interface between application and FE allows
the calendar application to access these modified. Once the
list of modified orefs is obtained by the calendar applica-
tion, the application must distribute the notification to the
appropriate calendar objects.

5 Related Work

Notification is not a new concept. GARDEN [5] pro-
vides a server with persistent, shared object-oriented data
storage and retrieval. GARDEN uses pessimistic locking
while THOR uses optimistic locking. THOR’s notification
system is more efficient because it includes all objects and
their new values while GARDEN’s notification indicates
that a single object has changed.

ORION [2] is an object-oriented database system that
supports versioning and change notification. ORION sup-
ports both message and flag-based notification while the
THOR implementation supports only message-based noti-
fication. The message-based notification infrastructure in

ORION relies on an object representation that differs signif-
icantly from that of THOR. Notification messages are sent
from object-to-object. In contrast, notification in THOR
uses the existing messaging architecture in which the server
(the OR in this case) sends notification messages out to the
clients, who in turn modify the objects. ORION was de-
signed with a local environment in mind, as opposed to a
globally distributed environment.

Microsoft SQL Server Notification Services [4] and IBM
Everyplace Intelligent Notification Services [1] provide no-
tification mechanisms. The applications that use these sys-
tems receive notifications as messages, while, in Thor, the
application sees the database objects as local objects, i.e.,
the Thor applications appear to have shared memory with
the OR.

6 Conclusions

We have described a notification mechanism in a dis-
tributed database environment that notifies clients of modi-
fications made to shared data. This notification mechanism
increases the flexibility and efficiency of applications to run
in a distributed data environment.

We are grateful for support from members of the MIT
Project Oxygen partnership: Acer, Delta, Hewlett Packard,
NTT, Nokia, and Philips. We would like to thank the re-
viewers for their comments. For readers interested in more
information, please see http://nms.lcs.mit.edu/papers/pkim-
thesis.pdf.

References

[1] V. Bennett and A. Capella. Extending Intelligent No-
tification Services to Monitor New Sources. "http:
//www7b.software.ibm.com/wsdd/library/
techarticles/0303_bennett/benne%tt.html".

[2] H.-T. Chou and W. Kim. Versions and change notification
in an object oriented database system. In 25th ACM/IEEE
Design Automation Conference, pages 275–281, 1988.

[3] B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing per-
sistent objects in distributed systems. In R. Guerraoui, editor,
ECOOP ’99 — Object-Oriented Programming 13th European
Conference, Lisbon Portugal, volume 1628, pages 230–257.
Springer-Verlag, New York, NY, 1999.

[4] Notification Services Product Team. Microsoft SQL
Server Notification Services Technical Overview, 2002.
"http://www.microsoft.com/sql/techinfo/
development/2000/sqlnsto.asp".

[5] A. H. Skarra, S. B. Zdonik, and S. P. Reiss. An object server
for an object-oriented database system. In ACM Transactions
on Database Systems, pages 196–204, January 1986.

Proceedings of the Seventh International Database Engineering and Applications Symposium (IDEAS’03)

1098-8068/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

