
Discovering Dependencies for Network Management
Paramvir Bahl, Paul Barham, Richard Black, Ranveer Chandra, Moises Goldszmidt,

Rebecca Isaacs, Srikanth Kandula†, Lun Li‡, John MacCormick, David A. Maltz, Richard Mortier,
Mike Wawrzoniak¶, Ming Zhang.

Microsoft Research; also ‡ Caltech, † MIT and, ¶ Princeton.

This paper presents theLeslie Graph, a simple yet powerful ab-
straction describing the complex dependencies between network,
host and application components in modern networked systems. It
discusses challenges in the discovery of Leslie Graphs, their uses,
and describes two alternate approaches to their discovery,sup-
ported by some initial feasibility results.

1 Introduction
It is lamentable that Leslie Lamport’s famous quote [9]“A
distributed system is one in which the failure of a com-
puter you didn’t even know existed can render your own
computer unusable”describes a scenario familiar to almost
every computer user. As IT systems are increasingly distrib-
uted, it is not only the clients and servers themselves that can
render a computer useless for an afternoon, but any of the
many routers, links and network services also involved.

In distributed systems, the underlying problem is the ab-
sence of tools to identify the components that “can render
your own computer unusable”: the implicit web of depen-
dencies among these components exists only in the minds
of the human experts running them. The complexity of
these dependencies quickly adds up, requiring more help
than traditional IT management software provides. Listing
the contents of a single DFS1 directory, for example, can
involve a minimum of three hosts and eight network ser-
vices (WINS, ICMP Echo, SMB, DFS, DNS, Kerberos, ISA
key exchange, ARP). Existing management solutions focus
on network elements, topology discovery, or particular ser-
vices, but what is needed are tools to manage and improve
the user’s end-to-end experience of networked applications.

In deference to Lamport, this paper defines theLeslie
Graphas the graph representing the dependencies between
the system components, with subgraphs representing the de-
pendencies pertaining to a particular application or activ-
ity. Nodes represent the computers, routers and services on
which user activities rely, and directed edges capture their
inter-dependencies. Different versions of a Leslie Graph can
express different granularities of dependence for an activ-
ity — for some analyses, an Leslie Graph capturing inter-
machine dependences at the granularity of IP addresses
might be sufficient, while for others an Leslie Graph captur-
ing inter-service dependencies at the granularity of software
processes might be desirable.

This paper makes three contributions: (i) we define Leslie
Graphs and discuss the challenges in finding them, (ii ) we
suggest important problems that Leslie Graphs could help

1Windows Distributed File System

solve, and (iii ) we describe two ongoing projects that are
exploring different approaches to automatically infer the
Leslie Graphs.

1.1 Existing Approaches
It might seem that the Leslie Graph for an application could
easily be constructed if its designer generated rules that spell
out the application’s dependencies. Indeed, a number of
commercial products such as MAM2 and the DSI “System
Definition Model”3 do just this. However, this approach has
several problems: the system could evolve faster than the
rules; deployment of various forms of middlebox (e.g., fire-
walls, proxies) can change the application’s dependencies
without the rule writers even being aware; and rules are un-
available for legacy systems.

Similarly, analysis of configuration files to determine the
Leslie Graph is insufficient as many dependencies among
components are dynamically constructed. For example,
web browsers on enterprise networks are often configured
to communicate through a proxy, sometimes named in the
browser preferences but frequently contacted through au-
tomatic proxy-discovery protocols that themselves rely on
resolution of well-known names.

Systems have been proposed to expose dependencies by
requiring all applications to run on a middleware platform
instrumented to track dependencies at run-time [1, 4, 7].
However, heterogeneity defeats most such efforts in prac-
tice. Networks run a plethora of platforms, operating sys-
tems, and applications, often from a wide range of vendors.
While a single vendor might instrument their software, it
is unlikely that all vendors will do so in a common fash-
ion; similarly, building all distributed applications over a
single common middleware platform is infeasible. Further-
more, many underlying services on which others depend are
legacy services and cannot easily be instrumented or ported
to run over an instrumented layer.

1.2 Challenges Finding the Leslie Graph
In contrast to the above approaches, but also without ex-
plicitly defining some notion of a Leslie Graph, others have
argued that a promising approach to inferring dependencies
is to observe externally visible behavior of system compo-
nents without parsing the contents of packets they send—the
“black-box” approach [2, 13]. We follow this general ap-
proach, relying mainly on correlation of observed network

2http://www.mercury.com/us/products/business-availability-
center/application-mapping/

3http://www.microsoft.com/windowsserversystem/dsi/sdm.mspx

1HotNetsV Session 6: Dependence 97



traffic to infer system dependencies, and augmenting as re-
quired with other techniques such as active probing. How-
ever, there are several challenges with this approach.

False positives.The Leslie Graph is expressed in terms
of dependency between components, which requires under-
standing theircausality. However, using observed traffic re-
sults in measuring theircorrelation, which is not the same.
For example, it is perfectly possible for unrelated conversa-
tions, such as periodic background maintenance traffic, to
exhibit misleading timing correlations.

False negatives (caching).Statistical correlations re-
quire a substantial number of observations in the presence of
noise (unrelated background traffic). However, much crit-
ical control plane and session setup behavior occurs rela-
tively rarely. For example, it is difficult to determine that
a web-browser’s use of HTTP depends on both DNS and
ARP through traffic observation alone, as the services are
typically invoked once and the results cached.

Granularity. Many modern IT deployments use clusters
of servers to implement load-balancing and resilience for
critical tasks. Alternatively, in smaller systems multiple ser-
vices will be hosted as separate processes on a single server.
Thus, a vertex of the Leslie Graph might need to represent
other than a single computer: at some times an entire cluster
of computers will be appropriate, at others a single process
on a single computer.

Complexity. Enterprise networks use a wide variety of
applications [11], including complex services like authen-
tication (Active Directory, IPSEC, Kerberos, RADIUS), re-
mote file systems (AFS, DFS, NFS, SMB), web applications
(Sharepoint, Wikis), communications (VoIP, IM, email) and
utilities (printing, DHCP, ARP). The inter-dependencies be-
tween these are extensive and poorly specified.

Trust. To compute the Leslie Graph hosts must share in-
formation about their activities and are expected to do so
truthfully. In an enterprise network this trust can be estab-
lished and enforced by the company’s network policy and
administration procedures.

We restrict our subsequent discussion to discovery of
Leslie Graphs in enterprise networks precisely because the
latter two challenges, complexity and trust, make enterprise
networks both a useful and feasible place to do so. We as-
sume that we can place agents on a reasonable fraction of
the computers on the network to monitor packets sent and
received. These agents can also be used for tomography:
taking measurements and enabling probing from many van-
tage points to discover network topology and resolve ambi-
guities in the Leslie Graph.

2 Leslie Graphs and Their Uses
Studies show that∼ 70% of enterprise IT budgets are spent
on maintenance.4 The ability to create an enterprise’s Leslie
Graph could have a major financial impact by enabling the
following techniques for management and troubleshooting.

Fault localization. A common source of frustration for
users is when an application temporarily hangs for no read-
ily apparent reason. The hardest part of resolving such prob-
lems is often locating the problem in the first place. Is it
in an overloaded server? A policy configuration? A failed
router or link? The Leslie Graph for an application not only
summarizes the components that are involved, but also al-
lows information from multiple clients to be combined to
pinpoint faults through tomography.

Reconfiguration planning. A classic tale of unexpected
consequences [10] involves an old machine configured to
backup an SQL database. Since the dependency of the pri-
mary server on this old machine for backup service was not
explicit, operators re-imaged and recycled the old machine.
Unfortunately, the primary server failed around the same
time, and the database was completely lost. Companies
are continually adding, reorganizing, or consolidating ser-
vices. Frequently, changes are disruptive to services beyond
those directly involved due to unexpected and previously
hidden interactions. Planning these changes and diagnosing
the problems that inevitably result is expensive.

Leslie Graphs can be expected to help in two ways. First,
by automatically detecting dependencies, unexpected con-
sequences can be identified in advance and planned for. Sec-
ond, Leslie Graphs allow IT departments to warn ahead of
time the users who will be affected by changes.

Helpdesk optimization. The fact that many users are ac-
tive at the same time means that failures are likely to result
in many calls to the helpdesk — initiating a new diagnostic
effort for each call would be wasteful. Knowing the depen-
dencies among components means that new reports can be
rapidly chained to the trouble ticket of a known issue: elim-
inating time spent investigating dependent issues. It also
reduces the likelihood of inappropriate remediation such as
unnecessarily rebooting the user’s computer, and it helps to
prioritize trouble tickets by the numbers of users affected.

Anomaly detection. If Leslie Graphs are automatically
constructed based on the observed behavior of hosts, anom-
alies and changes in the graphs point to hosts that are worthy
of more detailed human investigation. For instance, differ-
ences between clients can be used to find policy issues. If a
set of clients cannot reach a server while everything is fine
for another set of clients, our algorithms will localize the
problem to the clients. The structure of the Leslie Graph
can then help guide a human to determine if the cause is a
middlebox/firewall common among the clients or a policy
(e.g., IPSEC) on the clients themselves.

4Forrester Research, “Governing IT in the enterprise” (July2004) and
http://research.microsoft.com/events/snmsummit

298 Discovering Dependencies for Network Management



3 Implementation Considerations
We are exploring two different approaches to approximating
the Leslie Graph using low-level packet correlations. The
Constellation system uses a distributed approach, reactively
constructing the Leslie Graph of any node on-demand. In
contrast, the AND system, which stands for Analysis of Net-
work Dependencies, proactively maintains the approximate
Leslie Graph at a centralized inference engine. The rest of
this section describes these systems in more detail.

3.1 Constellation

In the Constellation system, local traffic correlations arein-
ferred by passively monitoring packets and applying ma-
chine learning techniques. The basic premise is that a typ-
ical pattern of messages is associated with accomplishing
a given task. Therefore, it is possible to approximate the
Leslie Graph by taking the transitive closure of strongly cor-
related nodes, and furthermore we can detect or diagnose
faults by observing theabsenceof expected messages.

In order to explore the class of machine learning ap-
proaches that are applicable, we have formalized the prob-
lem. Space precludes a complete presentation, but the fol-
lowing three concepts are critical:

Channel. A channel represents the entities between
which messages flow and thus between which an edge exists
in the Leslie Graph. For example, all packets sharing the
same source and destination address might be designated
as belonging to a single channel. Alternatively, at a finer
granularity we might additionally use application protocol
to identify a channel. Channels are described asinput or
outputchannels based on whether they represent messages
received at or transmitted by a host.

Activity pattern. We assign a value of eitheractiveor
inactiveto each channel in the network over some fixed time
window. A set of such assignments to channels at a node is
an activity pattern for that node, indicating whether or nota
packet was observed on each channel during the observation
time window.

Activity model. The activity model for a node is a func-
tion mapping the activity pattern of the input channels to a
vector of probabilities for each output channel being active.

The idea is that by repeatedly observing whether an out-
put channel is active for a given input activity pattern, we
can learn the activity model on a host. To do this we are
investigating a number of alternative mechanisms including
Naive Bayes Classifiers [8] and Noisy-OR models [12]. Our
results so far show promise, but have also highlighted some
of the inherent trade-offs for this approach. Since activity
patterns discard all packet timings and counts within the
observation window, picking a suitable duration for the win-
dow is critical. Over a very long time window we will learn
that all channels are related, whereas selecting a window
size that is too small will cause correlations to be missed.

We are tackling this problem by building activity models si-
multaneously for a range of window size and working on
good ways to combine the resulting models.

Constellation uses activity models on hosts to approxi-
mate Leslie Graphs in a completely distributed manner. The
correlation coefficients in the activity model encode the con-
fidence level for a dependency between two nodes. When a
host wishes to learn its Leslie Graph for a particular service,
it queries its relevant peers to find strong next-hop correla-
tions in their activity models for when only the input chan-
nel on which the query was sent is active. This query is
then forwarded to those peers who repeat the process, and
the resulting transitive correlations combine to give a Leslie
Graph from the point of view of the local host. When the
Leslie Graph is large this has the advantage that we can or-
der the search by “most likely” path. Leslie Graphs are gen-
eratedon-demandand give a snapshot of recent history at
each member host.

One of the challenges when combining local activity
models to form a Leslie Graph is choosing an appropriate
threshold for deciding that a correlation is strong enough to
be part of the graph. At some correlation value for a given
edge there is insufficient evidence to assume a causal rela-
tionship, and so the edge should be excluded. We are cur-
rently investigating this and several other issues, including
statistical hypothesis tests for detecting both anomalousand
normal changes to an activity model.

3.2 AND
The AND system consists of a centralizedinference engine
and a set ofagents, one running on each desktop and server.
Each agent performs temporal correlation of the packets
sent and received by its host and makes summarized in-
formation available to the engine. The inference engine
serves as an aggregation and coordination point: assembling
the Leslie Graph for applications by combining information
from the agents; ordering agents to conduct active probing
as needed to flesh out the Leslie Graph or to localize faults;
and interfacing with the human network managers.

Computing the Leslie Graph. Using the terminology of
Section 3.1, we define achannelas a 3 tuple of [RemoteIP,
RemotePort, Protocol]. Each agent then continuously up-
dates a matrix of the frequency with which two channels are
active within a 100 ms window.5

To construct the Leslie Graph, the inference engine polls
the agents for their matrices. Figure 1 illustrates how ag-
gregating matrices from multiple agents over a long period
of time can find dependencies that might be obscured by
caching, since even infrequent messages to a server become
measurable when summed over many hosts. For example,
many hosts will have a matrix similar toH3’s that shows

5We have found values from 100 ms to 1 s produce the same depen-
dency graphs on clients, but servers that are heavily loadedmay cause de-
pendences to be spread over a larger time window.

3HotNetsV Session 6: Dependence 99



���
Figure 1: Part of a Leslie Graph discovered by AND when clients access
some web server. The dashed line indicates a dependency found by aggre-
gating information across hosts,H1,H2,H3.

a strong dependence on the web server, but no dependence
on DNS as the web server’s address has been cached. How-
ever, the matrices forH1 andH2 show that when these hosts
communicated with the web server they also communicated
with DNS in the same 100 ms window. If enough hosts that
communicate on channelA (e.g., the web server) also com-
municate on channelB (e.g., DNS) within the same 100 ms,
then the engine infers that any host depending onA most
likely depends onB as well and will add to the Leslie Graph
a dependency onB, as shown by the dashed line in the fig-
ure. Each edge in the Leslie Graph also has a weight, which
is the probability with which it actually occurs in a transac-
tion. In Figure 1, for example,H1 contacts the DNS server
20% of the time before it accesses the web server.

Networks that include either fail-over or load-balancing
clusters of servers (e.g., primary/secondary DNS servers,
web server clusters) are modeled by introducing a meta
node into the Leslie Graph to represent each cluster, for ex-
ample, the DNS Service node in Figure 1. Currently we use
heuristics based on DNS names, port numbers, and stem-
ming URLs to identify clusters and leave automatic detec-
tion of cluster configurations for future work.

In addition to user machines and application servers,
AND extends the Leslie Graph by populating it with net-
work elements, such as routers, switches and physical links.
This broadens the applications of the Leslie Graph as,
e.g., link congestion faults can now be localized. We can
map the layer-2 topology by using the agents to send and
listen for flooded MAC packets as in [5], and the layer-3
topology using traceroutes. Other techniques [6] could be
used if SNMP data is available.

Using the Leslie Graph. Of the scenarios described in
Section 2, our current focus is on efficient fault localiza-
tion. Each agent observes the experiences of its own host
(e.g., measuring the response time between requests and
replies). When a user on the host flags the experience as
bad, the agent sends a triggered experience report to the
inference engine. For example, a negative experience re-
port might be generated when a user restarts their browser
or hits a button that means “I’m unhappy now”, or when
automated parsing identifies that something wrong has hap-
pened (e.g., too many “invalid page” HTTP return codes).

A small number of randomly selected positive experiences
(e.g., the time to load a web page when the user did not
complain) are sent to the engine every 300 s.

The engine batches experience reports from multiple
agents and applies Bayesian inference to find the most plau-
sible explanation for the experience reports (i.e., the min-
imum set of faulty physical components that would afflict
all the hosts, routers and links with poor performance while
leaving unaffected the components experiencing acceptable
performance). Space prevents a full description, but al-
though Bayesian models typically require training, initial
results (Section 4) show the structure of the Leslie Graph
and the number of viewpoints provided by agents cause the
results to have little sensitivity to the training process.

Scalability. The use of a centralized inference engine
clearly makes it easier to aggregate information, but it raises
scalability concerns about CPU and bandwidth limitations.
On a single CPU, our system localizes faults on a Leslie
Graph of 160 nodes (see Section 4 for details on the exper-
iment setup) within 200 ms, with the time growing linearly
in the number of nodes in the Leslie Graph.

Back-of-the-envelope calculations show the bandwidth
requirements are feasible even for large enterprise networks.
Experience reports are about 100 B and are sent to the in-
ference engine every 300 s by each agent. The full co-
occurrence matrix is polled from each agent every 3600 s.
Most hosts in our network use fewer than 100 channels
(i.e., use< 100 servers), so the matrix is less than 100x100
floats. Even for an extremely large enterprise network with
O(100,000) computers and O(10,000) routers/switches, this
results in an average bandwidth of only 10 Mbps. Busy
servers have much more than 100 channels, but compres-
sion can be used if needed.

3.3 Discussion
As two separate projects, Constellation and AND are ex-
ploring two different points in the design space of ap-
proximating Leslie Graphs. While both approaches com-
pute Leslie Graphs by aggregating the activities of multi-
ple nodes, their differences highlight how the overall design
space can be broken down into three axes, namely timing,
structure, and granularity.

The first axis in the construction of a Leslie Graph is the
time when it is constructed. Constellation constructs the
Leslie Graph reactively, while AND proactively maintains
it at the inference engine. If the Leslie Graph is constructed
reactively, it imposes little overhead on hosts. However,
since nodes log packets over a short period of time, a re-
active scheme might miss out on dependencies affected by
cached state. For example, in Figure 1, a reactive scheme
might not determine the dependency between H3 and DNS.
Furthermore, by proactively maintaining the Leslie Graph,
the inference engine can respond to faults even before they
are detected by all the users.

4100 Discovering Dependencies for Network Management



The second axis is the structure of the system, i.e. whether
the Leslie Graph computation is centralized or distributed.
Constellation uses a distributed approach to compute the
Leslie Graph, while AND computes it at the centralized
inference engine. A distributed (unstructured) approach is
more robust to network and machine failures that might af-
fect connectivity to the centralized server, while a central-
ized approach is simpler and easier to manage. We are im-
proving the fault tolerance of AND by implementing the in-
ference engine as a distributed cluster of machines.

The third axis is the granularity of the Leslie Graph, as
discussed in Section 1.2. The nodes in the Leslie Graph
could be a cluster of servers, a particular machine or a
process on a machine. Similarly, for network elements, a
node could be end-to-end connectivity between machines,
or all the routers and switches in the path. The analysis
on a more granular Leslie Graph will be more precise, al-
though it might add complexity to the algorithm and unnec-
essary detail to the results. Constellation represents hosts
and processes in the Leslie Graph, while AND also includes
the routers and switches.

A notable trend is the increasing popularity of peer-to-
peer applications. These are designed to achieve reliability
by dynamically changing the set of servers with which a
client communicates based on the content being exchanged
or congestion levels in the system. As a result, the Leslie
Graph is not stable across long time-periods. A system
like Constellation, with its on-demand creation of the Leslie
Graph using only recent observations, will report the set of
peers currently in use. AND, which aggregates information
across time, may show a dependency on servers no longer
in use.

Our schemes do have limitations. We do not expect our
techniques to find servers that return incorrect answers un-
less these errors lead to performance or fail-stop problems.
For example, if a DNS server holds the wrong IP address
for a name and only one client looks up the name, our ap-
proach will help only if the Leslie Graph changes as a result.
Even if many clients lookup the wrong IP address and thus
are unable to establish a connection, our fault localization
algorithm will only point to the clients — although human
examination of the Leslie Graph would reveal the affected
clients share a DNS server. Here our tools and the structure
of the Leslie Graph may help human investigators, even if
they cannot automatically find the root cause.

4 Initial Results
Existence of correlations.The first step in validating

our approach is determining if there is detectable correlation
between input channels and output channels that are known
to be related, and no correlation between unrelated chan-
nels. If this were not true, then black-box techniques would
be infeasible. Figure 2 shows the results of plotting the time

10
3

10
4

10
5

10
60

0.02

0.04

0.06

0.08

0.1

0.12

Time between packets (us)

P
ro

po
rt

io
n 

of
 o

bs
er

va
tio

ns

 

 

EPM vs NetLogon
EPM vs uniform
NetLogon vs uniform

10
3

10
4

10
5

10
60

0.01

0.02

0.03

0.04

0.05

0.06

Time between packets (us)

P
ro

po
rt

io
n 

of
 o

bs
er

va
tio

ns

 

 

SMB vs EPM
EPM vs uniform
SMB vs uniform

Figure 2: Evaluation of correlation between EPM packets & NetLogon
packets (left) and EPM packets & SMB packets (right), using correlation
with random noise as a control. EPM vs. NetLogon is significantly dif-
ferent from the control correctly validating their correlation while EPM vs.
SMB is indistinguishable from the control.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50

F
ra

ct
io

n 
R

eq
s 

D
ep

en
de

nt

client ID

dns/wins
prxy
prn

�������� ��	
�����������	
�����������������������������������
Figure 3: Example of finding dependencies of 53 hosts that contact an
internal webserver. The figure on top shows the probabilistic dependen-
cies discovered at each client. The figure below graphicallyrepresents the
typical dependencies and also illustrates a false-dependency.

difference between receiving a packet of one protocol and
sending a packet of the other protocol for three protocols:
EPM (the RPC portmapper), NetLogon and SMB. Traces
were collected for 1 hour from a busy server. The time dif-
ferences are also computed against a packet stream whose
timestamps are drawn from a uniform random distribution,
representing background noise.

The right figure shows that SMB and EPM correlate as
strongly with the random packet stream as they do with
each other, implying they are not correlated. This is cor-
rect, as SMB and EPM are unrelated protocols. The left
figure shows EPM and NetLogon have a very different dis-
tribution than the comparison with the random stream, im-
plying EPM and NetLogon are closely related — in fact,
NetLogon clients use EPM to locate the port to which they
send their requests. We obtained similar validation for many
other protocols, implying that packet-correlation techniques
are feasible.

Finding dependencies.As a first test of AND’s tech-
nique for finding dependencies in presence of caching, we
ran the Leslie Graph generation algorithm against data from
53 hosts collected over one hour. Figure 3 shows the frac-
tion of requests made by each client to the DNS, proxy,
and PrintServer that co-occur with a request to a common
webserver, called MSweb. As we can see, most clients in-
voke DNS when making web requests, although not 100%
of the time due to caching. However, we still extract the

5HotNetsV Session 6: Dependence 101



correct dependency. The data also show some clients are
dependent on the proxy that is normally used for external
access, even when accessing the internal web server. In-
vestigation showed that these clients were misconfigured
with an out-of-date list of internal names, indicating how
our approach can be useful for detecting some classes of
policy/configuration faults. Two misbehaving hosts made
so many requests to the PrintServer that their dependencies
for MSWeb became abnormal, showing that even false pos-
itives can yield valuable management information.

Usefulness of the Leslie Graph.To evaluate the ability
of AND to find and use the Leslie Graph for fault local-
ization, we have created a testbed with 23 clients that are
evenly divided between two subnets connected by a router.
Each subnet has a web server running Sharepoint (a wiki-
like application), with data for the web sites stored on a sin-
gle SQL database server on one of the subnets. Network ser-
vices (DHCP, authentication servers, DNS) are connected to
the subnet without the SQL server. Using packet-droppers,
rate-shapers, and load generators we can deterministically
create scenarios where any desired subset of the clients,
servers, router, and links appears as failed or overloaded.

We evaluated five scenarios where combinations of one
or more web servers, SQL server, routers, and links were set
to an overloaded or failed state while robots on the clients
made accesses to the web servers and each agent observed
the response times seen by its client. These scenarios have
Leslie Graphs with about 160 nodes, each of which is a
component that could potentially fail. A small portion of
the Leslie Graph for the testbed is shown in Figure 1. In all
five scenarios, our fault localization algorithms run over the
Leslie Graph correctly determined the problematic compo-
nent. In three scenarios, the algorithm reported one more
potentially problematic candidate than the number actually
afflicted, but the algorithm also proposed the correct set of
active probing tests to resolve this ambiguity.

5 Related Work
Project5 [2] proposes finding performance bottlenecks in
a distributed system by using black-box approaches to
track requests as they move between servers in the system.
WAP5 [13] extends Project5 by developing a new message
correlation algorithm for determining which arriving pack-
ets trigger which outgoing packets on a host. In contrast,
this paper identifies the importance and challenges of dis-
covering the Leslie Graph to support a broad range of man-
agement functions. By computing Leslie Graphs at differ-
ent granularities, our techniques can uncover dependencies
which might be overlooked by WAP5 and Project5, such as
those masked by caching. We also present several new sce-
narios where the Leslie Graph can be applied. The notion of
“Communities of Interest” (COIs) in enterprise networks is
studied by Aielloet al [3]. A COI is defined more narrowly

than the Leslie Graph, as a collection of interacting hosts,
and the authors do not explicitly consider the problem of
finding network dependencies.

6 Conclusion
As the web of dependencies between hosts, applications
and network elements increases in size and complexity,
building tools to automatically discover and reason about
these dependencies will be invaluable for network oper-
ators and normal users. In this paper, we introduce the
Leslie Graph as a generic representation of this web of
dependencies. We present two complementary approaches
to computing Leslie Graphs, and highlight the differences
between them in three dimensions in the design space.
We also present several applications of Leslie Graph and
the challenges in discovering its approximation that have
not been addressed in prior work. We are now gaining
experience using the Leslie Graph, and so far have had
success finding anomalous configurations and localizing
performance faults, which tend to be transient, hard to
debug, and annoying to users. We believe that the general
problem of discovering and using Leslie Graphs presents a
rich field of future research.

References
[1] A.Brown, G.Kar, and A.Keller. An active approach to characteriz-

ing dynamic dependencies for problem determination in a distributed
environment. InIFIP/IEEE IM, May 2001.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, andA. Muthi-
tacharoen. Performance debugging for distributed systemsof black
boxes. InSOSP’03, pages 74–89, Oct. 2003.

[3] W. Aiello, C. Kalmanek, P. McDaniel, S. Sen, O. Spatscheck, and
J. V. der Merwe. Analysis of communities of interest in data net-
works. InPAM’05, Mar. 2005.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. InOSDI’04, Dec. 2004.

[5] R. Black, A. Donnelly, and C. Fournet. Ethernet topologydiscovery
without network assistance. InICNP’04, Oct. 2004.

[6] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, and A. Sil-
berschatz. Topology discovery in heterogeneous IP networks: The
NetInventory system.IEEE/ACM ToN, 12(3), June 2004.

[7] M. Y. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer. Path-based failure and evolution management. In
NSDI’04, pages 309–322, Mar. 2004.

[8] R. Duda, P. Hart, and D.G.Stork.Pattern Classification. Wiley-
Interscience, 2nd edition, Oct. 2000.

[9] L. Lamport. Quarterly quote.ACM SIGACT News, 34, Mar. 2003.
[10] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet

services fail, and what can be done about it? InUSENIX SITS, 2003.
[11] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney.

A first look at modern enterprise traffic. InIMC’05, pages 15–28,
Oct. 2005.

[12] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networksof
Plausible Inference. Morgan Kaufmann, Sept. 1988.

[13] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vah-
dat. WAP5: Black-box performance debugging for wide-area sys-
tems. InWWW’06, May 2006.

6102 Discovering Dependencies for Network Management


