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Abstract

We present the design, implementation, and evalua-

tion of the Acoustic Embedded Networked Sensing Box
(ENSBox), a platform for prototyping rapid-deployable-dis
tributed acoustic sensing systems, particularly distedu
source localization. Each ENSBox integrates an ARM pro-
cessor running Linux and supports key facilities requiad f
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1 Introduction

Distributed acoustic sensing has many applications in
scientific, military, and commercial applications, includ
ing population measurement projects tracking the calls of
birds [37] and wolves, military systems tracking vehicl@][3
and personnel [2] movements, and commercial systems in
support of smart spaces. Acoustic source localization can

source localization: a sensor array, wireless network ser- also provide an inexpensive and easi|y integrated solidion

vices, time synchronization, and precise self-calibraté
array position and orientation. The ENSBox’s integrated,
high precision self-calibration facility sets it apartrimather
platforms. This self-calibration is precise enough to sup-
port acoustic source localization applications in compiex
alistic environments: e.g., 5 cm average 2D position error

the more general sensor node localization problem, by using
a source-localizing infrastructure to detect and locatalkm
inexpensive nodes that emit a characteristic calibratigh s
nal. However, despite the overall interest in these prob-
lems, and despite significant progress in related areas such
as source localization theory and sensor network systems,

and 1.5 degree average orientation error over a partia_Hy ob progress toward developing and deploying these applitstio
structed 80x50 m outdoor area. Further, our integration of has been greatly slowed by the absence of an integrated

array orientation into the position estimation algorithsrai
novel extension of traditional multilateration technigugve
present the result of several different test deploymengés-m

platform suitable for prototype acoustic source localoat
systems. While prior acoustic sensing projects have devel-
oped systems to support specific applications, those sgstem

suring the performance of the system in urban settings, ashave either been too heavily optimized and too application-

well as forested, hilly environments with obstructing &ge
and 20-30 m distances between neighboring nodes.
Categories and Subject Descriptors

C.3 [Computer Systems Organizatiof: Special-
Purpose and Application-Based Systenfignal process-
ing systems
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specific to support rapid prototyping, or else have lacked a
feature set appropriate to acoustic source localization.

Figure 1 shows a typical distributed acoustic source local-
ization application. Several sensor array nodes are Idcate
at points surrounding an event of interest. When an event
of interest occurs, the system should output an estimate of
the most likely location of the event, while other sources of
acoustic energy should be filtered out as noise.

In a typical implementation, each node runs a lightweight
streaming detection algorithm on a single acoustic channel
to search for events that match a certain signature. When an
event matches, full array data is retrieved and more saphist
cated processing is scheduled to compute a bearing estimate
and to enhance the signal. These estimates and other data
are then correlated among the reporting sensors to estimate
a probability distribution of the most likely locations dfet
target source [37].

In this paper we present the Acoustic Embedded Net-
worked Sensing Box (ENSBox), a platform for prototyping
rapidly-deployable distributed acoustic sensing syst@as
ticularly distributed source localization. Each ENSBox in
tegrates a developer-friendly ARM/Linux environment with
key facilities required for source localization: a sensoay



2.1 Acoustic Sensing Platforms

Support for acoustic sensing can be found in a variety
of off-the-shelf solutions and research projects in the sen
sor network field. These solutions vary greatly in terms of
the facilities they provide as well as how amenable they are
to prototyping.

The most off-the-shelf solutions are PC hardware or lap-
............ Node ; tops with multi-channel sound cards, or even appliances suc

as wireless networked web-cams. While they are readily

available and easiest for an end-user to pick up and use,
they tend to be more difficult to use in a distributed context.
Solutions that stream all of the data to a central point typi-
cally don’t scale, and implementing tight time synchroniza
tion across nodes is quite difficult because off-the-sheli@a
network services, time synchronization, and self-catibra  Products are rarely designed to provide sample-accurae ti
of array position and orientation. Self-calibration is @sp ~ St2mps. _ , _
cially important to source localization applications, bese A number of research projects in the sensor network field
error in the assumed orientation of a node directly offdetst have developed platforms in the course of their work. One of
bearing estimates, resulting in a localization error teates ~ the earliest general-purpose sensing platforms was the WINS
with the range to the target. Similarly, error in the positio NG platform developed by Sensoria Corp. for the DARPA
of a node can result in a direct translation in the localiza- S€nsIT program [26]. This platform supported multi-chdnne
tion result. The ENSBox’s integrated, high precision self- Sensing, multihop wireless networking and a Linux OS with
calibration facility eliminates manual survey of array pos few resource constraints. However, it did not support tight
tions and orientations, capturing the imagination of a neimb  time synchronization; most of the results using this platfo
of scientists interested in bio-acoustics who would otfigew ~ Were synchronized off-line using a starting pistol as a reark
need to develop their own platform. Further, our integratio 1ime Synchronization features were added in a follow-on
of array orientation into the position estimation algamtis ~ Project developed for the DARPA SHM program [25], but
a novel extension of traditional multilateration techrégu this version was a closed system, and was not made avail-

To ensure our system’s viability for typical source local- aPI€ to a larger community. _
ization applications, we performed outdoor test deployisien A number of projects have developed acoustic systems
in a variety of environments. In these tests we achieved Pased on the Berkeley Mote [16] and the MotelV Telos prod-

very high accuracy estimates of array position and orienta- Ut~ The Line in the Sand [1] and Extreme Scaling [2]
tion, results an order of magnitude better than prior agoust 9€mos of the DARPA NEST program demonstrated acous-
work [20]: 5 cm average 2D position error and 1.5 degree tic sensing platforms based_on the XSM platform. These
orientation error over a partially obstructed 80x50 m area. Projects successfully used microphones, magnetometets, a
Our results are comparable to recent RF results [23], but R t0 track soldiers walking through a large sensor field, but
since our application itself involves acoustic sensingpgis  lIMmited memory, CPU and communications capacity ruled
acoustic signals to calibrate the arrays is more direct. out complex signal processing algorithms. ,

We attribute much of this success to our system architec- | € Countersniper system developed at ISIS [22] is an ex-
ture, which enabled us to build a simpler, less optimized sys @mple of a platform that provides tight time synchronizatio
tem that in turn could support more sophisticated and effec- @nd high-speed sampling. However, because both hardware
tive signal processing algorithms. As a final indicator af th and software are heavily optimized for the countersniper ap

success of our platform, several other groups have alreadyPlication, itis difficult to use as a prototyping platform.
begun using it in source localization research. The VanGo [15] project uses a Telos as a platform for

processing audio, with the property that processing elésnen
can be dynamically shuffled between the Telos and the PC.
However, it does not provide time synchronization and the

Audio Input
Initial Detection

Bearing Estimate
I-I
.......

Figure 1. Diagram of a typical source detection and local-
ization application. The left shows typical processing at
the sensor, while the right shows cross-beam localization.
Note that the node orientation must be known in order to
interpret bearing estimates relative to the array.

In the following sections, we present the design, imple-
mentation, and evaluation of the Acoustic ENSBox system.
82 discusses related work in sensing platforms and self- oS o )
localizing systems. 83 describes the Acoustic ENSBox plat- processing "m't?“_'ons of the_ Telos_, make sophlst_|cz_;1ted im-
form. §4 describes our high-accuracy self-calibrationsys Plémentations difficult to achieve without early optimipat

tem. §5 defines performance metrics and presents a thoroug2.2 ~ Self-Localization Systems

evaluation of our self-calibration system in several =g Self-localization systems have been an active area of re-
outdoor environments. Finally, §6 discusses these reisults search for many years [38] [28] [33]. Due to space con-
the context of related work. straints we will mainly discuss other work designed for out-

2 Related Work door use. The most similar projects are three audible acous-
elate or ] ) _ ) tic ranging systems described by Sallai [31], Kwon [20], and
The related work for this project falls into two categories: Kyshwaha [18]. These systems vary in performance, but

platforms designed to support acoustic sensing, and self-a|so vary greatly in their available RAM and computational
localization systems. In this section we discuss the relate

work in both of these areas. 1Seeht t p: / / www. ot ei v. com




power. The systems described by Sallai and Kwon are both
implemented using a standard Mica2, and in the case of Sal-
lai, a standard sensor board. The system reported by Kush-
waha is based on a Mica2 with an attached custom 50 MHz
DSP processor and an external speaker. While these systems
have the advantage of running on much simpler, much lower-
power hardware, we will see in 86 that the Acoustic ENS-
Box leverages its greater computational resources toaehie
higher accuracy and longer ranges in more complex environ-
ments.

Recent work in radio-interferometric localization [23ha E
been implemented using the Mica2 platform, and shows Figure 2. Photograph of an acoustic array, and a diagram
much promise. In open-space testing with minimum multi- of the local coordinate system defined relative to the ar-
path interference, this work demonstrates comparable-rang ray geometry. The microphones are laid out in an 8 cm
ing and localization accuracy to our acoustic system. How- square, with one raised 14 cm above the plane. The ori-
ever, this techniqgue may be susceptible to errors from mul- gin is at the center of the plane. The azimuth angl® de-
tipath interference, and no results from more complex;clut fines the positive X-axis as 0 degrees, increasing counter-
tered environments have been published. clockwise in the plane, and the zenith anglg defines the

The Cricket compass [29] is an ultrasound-based bear-ray parallel to the plane as 0 degrees.
ing estimator intended for pervasive computing applicetio ) )
The bearing estimation aspect of our system is similar, al- for 24 hours on a single 12V 7.2 AH (86WH) gel cell. This
though our techniques yield higher accuracy. We will make compares favorably with laptop run times, which typically

(-4,4,14)

a more detailed comparison in §6. run for 3 hours on a 50WH battery. Significantly longer life-
. times should be possible with duty cycling, but we leave this
3 Platform Overview to future work.

The Acoustic ENSBox system provides a platform for 3 5 goftware Services
developing deployable prototypes of distributed acoustic While hardware integration is an unavoidable part of

source localization and sensing applications. We achievey, ,iiqing 4 platform, the key advantages of the Acoustic ENS-
this by providing the necessary hardware and software fa- g, v\atform lie in the software and AP stack that we have

cilities in a platform that has sufficient resources to dgplo  jegigned to support our target applications. These incude
systems without extensive optimization. These facilittes time synchronized sampling API, networking primitives to

clugle a _I&l]nuxccl)r;eratmg (Ie_nwronm_ent, a s;:nsor alrrat)_/ on eachg \yhort in-network collaboration, and a location and orien
node with a data sampling service, sub-sample time syn- & " oo S

chronization across nodes, communication services, and ag .
ot g g : ; ' .2.1 Data Samplin
self-calibration service that automatically determirreso- Many sensing agplicgations run an on-line detection pro-

e ooy ey Tl e that iggers More SophStcAwat facto processing
described in [36] [11] ' on the portions of the stream most likely to contain events.
' This technique is used locally to reduce false positivesiate

3.1 Hardware and to trigger remote nodes to perform collaborative poces

The Acoustic ENSBox is based on the Sensoria Slausoning. Post-facto processing yields an intuitive solutionHis
board, a single board computer based on the 400 MHz Intel data-flow structure, because the designer can abstract away
PXA255, with 64MB RAM, an on-board 32MB flash, and no  non-deterministic system delays, e.g. network latency.
FPU. The CPU board includes an SD-card slot for additional ~ To support this model, the data sampling interface defines
storage, and a dual slot PCMCIA interface, which hosts a persistent and continuous sample “clock” for the sensor in
an 802.11 wireless interface and a Digigram VXPocket440 puts, and preserves recent historical data in a ring bufffes.
four-channel sampling card. The node runs the Linux 2.6.10 interface enables access to historical data by index rasige a
kernel, with minor modifications to the kernel and to the well as streaming access to incoming data. It also integrate
Digigram firmware required to support accurate timestamp- with a time synchronization system that maintains clock con
ing of sensor data. Application and other user-space st#twa version parameters among a set of local sensor and remote
is written within the Emstar [12] software environment. node clocks. This implementation follows from earlier ver-

Each node hosts a 4-channel microphone array, geometsions described in [36] [11], and is described in more detalil
rically arranged as shown in Figure 2. The microphones in §3.2.2.
are condenser modules (RTI 1207A) coupled with a custom  For example, consider the detection system shown in Fig-
preamplifier board. They are mounted securely in a plastic ure 1. In this case, the initial detection algorithm proesss
and aluminum chassis that is readily mounted atop a tripod one channel of acoustic data, and identifies features of in-
or stake. terest. Upon detection, it passes the index range to another

The node can be powered from an internal Li+ battery module that retrieves the corresponding data from all four
or from an external source such as an adapter, an externathannels, computes a bearing estimate, and enhances-the sig
battery, or a solar panel. The system will run continuously nal using beamforming. The internal buffer enables post-



facto retrieval of the four channel dataset, after theahiti  not require any coordination to determine a global timepase
detection has triggered. since it simply converts from the timebase of the source to
This model is even more compelling in the case of trig- that of the destination, along the path between the two nodes
gering across nodes, where network latencies are involved.The disadvantage is that while it provides accurate conver-
After detection and enhancement at node 1, the time andsions it does not provide a good way of storing timestamps
bearing of the detection are sent to node 2. Using the timefor future interpretation, because over long periods oktim
conversion API, node 2 can convert the time in the messagethe clocks will not behave linearly.
to a range of data from its own sensor clock, and retrieve that  The second method is to use the global time service. The

data for further analysis. global time service uses the first method to push out a mes-

3.2.2 Multihop Time Conversion sage containing a fixed timestamp from “global time”, along
Collaboration across nodes in a distributed system re- with the corresponding timestamp in local time. As this mes-

quires facilities for reconciling the timing of events reded sage propagates, the local timestamp is converted afthr eac

at different nodes. The precision required varies for déffe hop into the timebase of the receiver, thus providing each
applications: those involving measurement of time of flight node with an observation of “global time” in terms of its lo-
or time difference of arrivals often require precisionsbat cal clock. Once several of these observations are known, a
order of microseconds [32], while for long-term recording linear conversion relation can be derived using least swuar
of event times and for many system mechanisms, millisec- Thus, if some subset of the nodes have access to time from
ond or second resolution is sufficient. However, despiteghe a GPS unit, they can “broadcast” global time into the net-
variations, some form of time synchronization is one of the work. Applications can then simplify their protocols and
most common and critical requirements in embedded sens-leverage the superior frequency stability of GPS by report-
ing. Acoustic ENSBox supports time synchronization with ing and recording events in terms of global time.
precision on the order of 10 microseconds over multiple RF  The support for multihop time synchronization provided
hops, satisfying the requirements of the self-calibraten by the Acoustic ENSBox fits into the API framework pro-
vice. posed in Elapsed Time on Arrival [19]. The ENSBox sam-
The Acoustic ENSBox supports an integrated suite of pling service provides what ETA terms a Data Series Time-
time conversion facilities, briefly introduced in §3.2.1hi§ stamping API. The ENSBox hop-by-hop conversion mecha-
conversionapproach, first proposed in [9] and later for- nism provides an Event Timestamping API, and is mechan-
malized in [19], differs subtly from traditional approashe ically similar to the “RITS” algorithm. The ENSBox global
to time synchronization Whereassynchronizatiormethods time service provides a Virtual Global Time API, and is me-
discipline the clocks to control their rate relative to ansta  chanically similar to the “RATS” algorithm. However, in
dard, conversionmethods allow the clocks to run indepen- the low-level implementation, RBS is used as the synchro-
dently and instead produce or maintain conversion param-nization primitive, rather than ETA. Unlike RBS, an ETA
eters that carconverta point in one timebase to another implementation over 802.11 radios would require firmware
on demand. This approach is advantageous from a systemsnodifications that exposed precise timing of message &rriva
and integration perspective, because disciplining arllasci  and transmission, as well as the ability to add timing data
tor without introducing artifacts generally requires spéc to a packet directly before transmission. While ETA should
ized hardware support. in principle always outperform RBS, ETA's message tim-
The time conversion API serves as a broker between ser-ing requirements are impossible to implement for systems
vices and clients: services that manage a resource carmgaini in which ETA is not explicitly supported and the implemen-
a clock publish time relations, and clients request conver- tation of the radio is closed.
sions. The Acoustic ENSBox platform presents applications .
with three pre-defined clocks: the node’s local CPU clock 3-2-3 Communication
(i.e. the output ofjettimeofday()), the local sensor clock, and Distributed sensing applications inevitably rely on net-
global time. In addition, the system maintains conversion Work facilities. While solutions such as Roofnet [5] can
metrics to the CPU clocks of one-hop neighbors over 802.11, Provide end-to-end IP routing, many applications can benefi
using Reference Broadcast Synchronization (RBS) [8]. RBS from other ne_twork level abstractions. 'I_'h_e_Acoustlc ENS-
is unique in that it can yield synchronization on the order Box platform includes support for two primitives developed
of microseconds using standard 802.11 hardware; solutionsto support system diagnostics and self-calibration.
such as NTP [27] typically yield 100 microsecond preci- The first primitive is a unreliable hop-scoped flooding ser-
sion over 802.11 [8]. Attempts to synchronize based on vice with integrated hop-by-hop timestamp conversionsThi
microsecond-granularity timestamps from the 802.11 MAC mechanism provides a simple way for an application to prop-
layer have also failed, because the MAC clocks do not main- agate an event notification with a precise timestamp. While
tain linearity for more than 10s of seconds [10]. the flood is not guaranteed reliable, flooding generallydgel
Acoustic ENSBox supports two methods of multihop high reliability with low latency.
time conversion. The first method is to place the timestamp  The second primitive is aeliable publish-subscribe
of interest in a network packet, and convert that timestampt mechanism for typed key-value data [14]. Using this layer,
“local time” on every hop through the network. This method applications publish tables of data that are subsequestly r
is supported by the flood routing service, for certain known ceived reliably at all nodes within a defined hop radius. Be-
packet types. The advantage of this approach is that it doescause the implementation is based on publishing a sequenced



log of updates, it can publish small updates to the previous4 Self-calibration Service

state efficiently. While the Acoustic ENSBox self-calibration service is a
The introduction of a reliable publication layer simplifies crucial part of supporting deployable source localizatpn

the implementation of many aspects of the platform. Com- plications, it also serves to exercise and test many of the fa

ponents on each node use this layer to report hardware faultsilities built into the platform. In this section we des@ib

and to publish range and bearing estimates to other nodesthe design and implementation of the self-calibrationiserv

Similarly, the centralized position estimation algorithises while showing how it makes use of lower level platform fea-

it to publish the results of position estimation. By design- tures.

ing the system based on scoped broadcast semantics, wg_ 1 System Overview

avoid the added complexity involved with explicit coordi- The Acoustic ENSBox self-calibration service enables
hation points. the implementation of outdoor source localization applica
3.2.4 Self-Calibration tions by estimating the 3D locations and orientations oheac

Support for source localization is one of the primary goals hode in a system of acoustic arrays. Typical source local-
of the Acoustic ENSBox platform. In these types of appli- ization algorithms work by computing bearing estimates at
cations, bearing estimates to the source and signal arrivalmultiple points and combining them to estimate a probable
times are measured at several locations; these estimates ardocation.
then combined to yield an estimate for the location of the ~ However, as we can see from Figure 1, in order to prop-
source. However, meaningful interpretation and combina- erly interpret and combine bearing estimates, the relative
tion of these observations requires precise knowledgeeof th sitions and orientations of the sensors must first be known.
positions and orientations of the nodes measuring bearingFurthermore, error in these position and orientation ezt
and arrival time. effectively increases the error in the bearing estimated, a

To address this, the Acoustic ENSBox includes software thus directly affects the quality of the source localizatéd-
that implements a self-calibration service that can dereem  gorithm. From these requirements of our target application
the 3D location and orientation of the sensor arrays in the We can define the calibration problem, and derive some sys-
system. As shown in Table 1, this service achieves very hightem performance targets.
precision in outdoor tests, with average 2D position erfor o 4.1.1 Definition of the Self-calibration Problem
5 cmin an outdoor 80x50 m daytime urban environment, and  The acoustic array self-calibration problem seeks to deter
with average error in orientation estimates of 1.5 degrees.mine a set of parameters that define the locations and orienta
We will discuss the design and implementation of this ser- tions of a collection of arrays. The parameters are refemsnc
vice in detail in 84, and present the results of performance to the coordinate system specified in the array geometry di-
testing in 85. The design of this service is particularlyerel agram shown in Figure 2. These parameters are defined in
vant because it exercises the same properties of the pratfor a global coordinate system that can be referenced either to a
as are required for many of our target applications. In fact, single origin array, or to a coordinate system defined by one
the data sampling, time synchronization, and networkfacil or more arrays placed at surveyed locations.

ities described in the preceding sections were designed to o | ot (%, Y;,Z;) be the location of array relative to the

support this localization service. global coordinate system.
Trial 2D (cm) 3D (cm) Orientation e Let©; be the “yaw” orientation of arraiy relative to the
Avg. [ Med. [ Avg. [ Med. [ Avg. [ Med. positive X-axis of the global coordinate system.
Cyl1|1] 60| 66 | 573|621 1.0 | 0.9 e We assume that all arrays are leveled, so that the re-
2] 51 [ 51 [381]354] 08 ] 07 maining two degrees of freedom are O relative to the
Cy2 |1 4.2 3.7 | 36.4| 220 | 1.6 1.3 global coordinate system.
2] 44 | 44 [496] 444 19 15 o If two or more arrays are placed at known coordinates,
JR 1] 91 100|419 363 | 2.7 | 17 we add a global scaling variabléthat allows the sys-
2] 72 | 65 | 325[ 325]| 32 | 24 tem to scale to fit that coordinate system. This scale fac-
3| 82| 77 [362] 205| 38 | 24 tor accounts for various environmental parameters that
4 97 | 11.3 ] 26.0| 243 | 1.8 1.7 affect the speed of sound.
©|| 111] 122 | 306] 298] 19 | 15 We propose a solution that first estimates range and bear-

ing information through acoustic ranging and then uses that
Table 1. Summary results from tests of the location and information to estimate these parameters. In the nextsgcti
orientation self-calibration service, compared against  we derive a performance goal to support our intended source
ground truth measured using 1 cm precision surveying localization applications.
equipment. Each test was performed outdoors, cover- 4.1.2 System Performance Targets
ing approximately 80x50 m area, in two different envi- Acoustic source localization applications (Figure 1) rely
ronments. The CY1 and CY2 tests were deployed in an  on translating local bearing estimates into a global ceordi
urban courtyard, while the JR tests were deployed ina  nate system. Errors in the estimates of array position and or
forested environment at the James Reserve. Orientation  entation introduce error in that translation, likely inasing
errors are in degrees. the error in the source localization result. Error in a nede’
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orientation estimate directly offsets the bearing to thece.
Error in a node’s position estimate can also offset the bgari
to a source: for example, a 10 cm error in position amounts
to a 0.2 degree error in bearing, for a source perpendicular t
that error, at 30 m range.

By considering these errors in the context of the accuracy
of source localization bearing estimates, we can derive-a pe Eemisoran [+ Nofe Estimats>
formance target. Using similar acoustic arrays, source-bea .
ing estimates have been reported accurate2d deg [37].

Modulator

FD Correlation

To reduce the significance of our localization error rekativ
to that figure, we set a performance target-dfdeg orienta- Bract

tion error and 10 cm 2D position error, representing at worst Figure 3. Block diagram of the filtering, correlation, and
about 50% of the error in source bearing estimates. detection algorithm.

4.1.3  Introduction to the Self-calibration System start of the chirp, and queue it for processing. The process-

The Acoustic ENSBox self-calibration system is initiated ing detects the signal, estimates bearing, enhances tha sig
by a user during deployment, and is controlled through an sing heamforming, and performs a final peak detection to
embedded web interface. The user deploys the system SQompute a time-of-flight estimate.
that the nodes have consistent radio connectivity and can  Tpe sampling, synchronization, and network facilities of
form a connected multihop network, and such that the nodesihe Acoustic ENSBox yields a substantial simplification of
will determine a well-constrained set of range relatiopshi  the jmplementation of the ranging system. The ability to re-
Using the web interface, the user can enter the locations ofyrjeve sensor data post-facto with precise timing enalbies t
any nodes that have known locations (measured through out-sender to send a single notification message, after the exact
of-band methods). Then, the user initiates the localinatio phase of the emitted chirp has been detected loga8limni-
process and observes the results. If the system does not Congyy, the flooding service and the time conversion service e
verge well, the user can “refine” the result by triggering ad- gpje the acoustic ranging code to focus on signal processing
ditional ranging, or by adding new nodes to better constrain ,roplems, with assurance that the samples extracted at the
the system. As arule, in order to achieve good results, eachygceiver are tightly synchronized with the time of the chirp
node should have ranges to other nodes that constrain it ingmission.
orthogonal directions, and three ranging trials are seffici In the next few sections, we discuss the processing stages
to acquire all available ranges. in more detail.

Behind this interface are two subcomponents: an acoustic4 2.1 Wideband Audible Acoustic Ranging

d beari timati dule, and iti ti- . : ) : .
range and bearing estimation module, and a posiion esi The ranging system uses wideband, audible “chirp” sig-

mation module. The range and bearing estimation module : R ;
nals that have excellent interference rejection propeeiea

measures the range and bearing to other nodes in the sys h q - 131, The chiro sianal
tem based on the reception of coded acoustic signals called?hase detection accuracy [13]. The chirp signals are gener-

“chirps”. The position estimation module triggers eacheod ated from a family of chaot.ic pseudono[se: (PN) cpdes gen-
in the system to “chirp” in turn, and collects the resulting €rated by repeated evaluation of the logistic equation,

measurements. It then implements a multilateration algo- X1 = R (1—Xn), 1)

rithm to estimate the calibration parametéxs Y, Z;,©;) as

a purely relative coordinate system. Finally, if the looa ~ whereR=3.98, 0< xp < 1 is the seed for the code, and bit

of some of the nodes are known, the relative system is fit to n of the code is 1 ik, > 0.5, and 0 otherwise.

match those known locations, allowing rotation and uniform These types of chaotic codes have been used success-
scaling. fully in other communications systems, including underwa-

. . . ter acoustic communications systems such as [3]. By testing
4.2 Range. and Bea“ng Estimation ... different seed values, we selected the best 128 codes from
The acoustic ranging component of the self-calibration

; : ; . this family, selecting for low off-peak autocorrelationdan
system is an active, cooperative ranging system [32]. Rang-joy cross-correlation with other codes in the family. Inttes
ing throughout the system is composed of a series of trials in, o t4nd that the codes were resilient to collisions: detec-
which one node emits a 1/3 second aud|b‘!e r_an”glng chirp” tion succeeded even in cases where three different senders
and other nodes in the system detect that “chirp”. chirped concurrently.
During a trial, the emitter plays the chirp from its speak-

. . ) The ranging signal is composed of a 2048-chip code,
ers and concurrently listens to detect the exact time attwhic ., qulated using binary phase shift keying (BPSK) on a

the chirp started. The detected chirp time is enclosed in @y Kz carrier. This modulation results in a signal that is
chirp notification packet and sent through the flooding ser- spread with the primary lobe covering 6-18 KHz (see [10]

vice to arrive at the other nodes. Because the flooding Ser'Lor more detailed information, including spectrum plots).
vice performs time conversion as the message passes throug

the network, receiving nodes will receive a packet contain- 2| gcal detection is required because the sound hardware does

ing a local timestamp. Using the data sampling service, they not have a facility for causing the sound to start precisely at a pre-
extract a historical segment of audio data beginning at the determined time.




SR Once the lags are computed, we use least squares mini-

m%@ . mization to fit them to the array geometry, solving for the
[ 70 Conrelaion >=f-»{_Combiner ] azimuth and zenith anglésand g (see Figure 2). The con-
[ e HA T straint equations in this system are n_onlinear functioas th_
Figure 4. Block diagram of the bearing estimation algo- ~ c0Mpare the lags between each pair of microphones with
rithm. a projection pf the bearing vector onto the array geometry.
We use gradient descent to solve the system and produce the

4.2.2 Detecting the Ranging Signal most likely estimate 0 and.

Figure 3 shows a block diagram of the filtering and detec- ~ The technique of first finding lags and then fitting them to
tion process. The ranging signal is detected using a “médtche the geometry has the advantage that it is resilient to mieer d
filter” implemented by correlation with a reference signal. viations in the geometry of the array caused by slightly mis-
The reference signal is a copy of the signal originally ezditt ~ placed microphones [10]. One disadvantage of this method
that is constructed locally based on the code index providedis that only the location of the maximum correlate is used in
in the notification message. the fit. This means that this technique won't work well when

To detect, the input data is passed through an FFT andthere are multiple sources of similar energy level, because
pre-filtered to remove low frequency components caused bySome pairs may choose one source as the max while other
wind. Next, it is correlated with the reference signal, dmelt ~ pairs choose another source. However, for our system this
correlation function is then returned to the time domain and is almost never a problem since after the matched filter our
analyzed to determine the earliest “spike” in any of the four Signals are located within a tight temporal bound and other
channels. interfering sources are strongly attenuated.

A “spike” is detected by first computing running mean 4.2.4 Signhal Enhancement via Beamforming
and variance estimates using an exponentially weighted Once a bearing estimate is computed, we can use this es-
moving average (EWMA). The EWMA is initialized based timate to enhance the ranging signal using a techniquedcalle
on the 100 samplegsrior to the chirp emission time, which  beamforming This technique phase-shifts the input channels
presumably represent ambient noise. Based on the runningo be consistent with the bearing estimate and sums them to
mean and variance, the algorithm selects as a spike the firstcompute a single, enhanced channel.
point at least 6 standard deviations above the mean. If no In our implementation, we take into account thetual
point qualifies as a spike, the detection is considered te hav observed lags in addition to the theoretical phase offset de
failed on that channel. If at least one channel detected therived from the bearing estimate and the nominal array ge-
signal, the earliest detection is used and the processneonti ometry. If the actual lags differ slightly from those com-
ues on to bearing estimation stage. puted based on the nominal geometry, the actual lag is used
4.2.3 Bearing Estimation in place of the computed lag. This improves the signal en-

. . . . hancement by accommodating slight deviations in actual mi-
Figure 4 shows the bearing estimation stage, based on y gs1d

Time Difference of Arrivals (TDOA). This algorithm works Cro.ﬁ? g neenflﬁr? f g;egitgrﬁ;?til\s/et;%;hﬁsneo dmggaclgrigﬁ]titrt)ﬁe final
by exploiting the fact that the signal will arrive at the éiff range estimate by a similar estimator as was used in §4.2.2
ent points in the array at different times, depending on the ” o T
direction of arrival of the ranging signal. Thus, by cross- 4.3  Position Estimation
correlating pairs of channel inputs, we can estimate phase The position estimation module drives the self-calibmatio
lags and fit those lags to the known geometry of the array. ~ Process by triggering ranging tests, collecting the range a

It is important to note that at the sample rate of 48 KHz, bearing estimates, and implementing a multilateration-alg
each sample corresponds to 0.71 cm of distance. This mean&ithm to resolve those range and bearing estimates into po-
that the quantization error due to sampling is a significant Sition and orientation estimates. In this implementatibe,
fraction of the size of the array (8 cm square). This would Multilateration algorithm is centralized, although thedsn
result in bearing errors of up to 5 degrees for angles nearly t€r" node is chosen dynamically and the computation of
perpendicular to the chord between a pair of microphones. ~ the ranging and bearing estimation algorithms is disteiut

To address this, the final stages of Figure 3 interpolate the Prior work [6] [34] [20] [21] on distributed multilateratio
region of the correlation function that surrounds the eatli ~ &/9orithms might be applied, although we have not consid-

detection. We interpolate by computing the Fourier coeffi- €réd thatin this paper.

cients for that region and evaluating them at 8x temporal res 4.3.1 Driving the System and Triggering Ranging
olution. This feeds into the start of Figure 4, where we c¢ross Since our system is intended in part as a deployment tool,
correlate the interpolated segments in the time domaindo fin our implementation is user-driven. Although this solution
the lag at which the correlation between each pair of chan-is less “automated”, in practice this enables the user to hel
nels is maximized. Because of the interpolation, these lagsthe system by observing and correcting problems that would
can be fractions of a sample. This technique is equivalent to otherwise be difficult or impossible to correct autonomgusl
prior work that performed an exhaustive angular search us- Once activated by the user, the system triggers ranging
ing fractional phase shifts in the frequency domain [4], but by sending a special flooded trigger message that schedules
our method is much more computationally efficient for our the nodes to emit ranging signals sequentially. The result-
application. ing range and bearing estimates are published by each node




individually via the reliable publish-subscribe primiivand The range constraints are a formulation of multi-
the “master” node subscribes to receive these updates. Afte dimensional scaling, stipulating that the distance betwee
30 seconds with no updates, the “master” begins the positiontwo nodesi and j must equal the smaller of the two mea-
estimation algorithm on the new data, and presents it to thesured rangeR, :

user when that algorithm completes.

4.3.2 Non-linear Least Squares Rij= \/(Xi =X))2+ (M =Y))?+(Zi - Z))2 )
To compute the position estimates we use a non-linear
least squares solution based on gradient descent. Our SOIUI'at

tion is similar to other least-squares solutions such as [6]
and to multi-dimensional scaling approaches such as [35] Y Y

[6] [20] [17] [30]. Our solution differs from pure multi- arctarm—kei =08i). ©)
dimensional scaling in that we use the bearing estimates as )

well as range to estimate position. Bearing estimatesace al ~ The zenith constraints relate ti@edimension to the ob-
used in [6] in their t — 8” formulation. However, we found  served zenith angleg ;:

The azimuth constraints use the arctangent function to re-
e the azimuth estimafk ; to the node coordinates:

that solution performed poorly because the impact of bgarin 7. _7

error scales with inter-node spacing, whereas the impact of arctan L =@, (4)
3 : X% )2 V)2 '

error from range-based constraints is constant [10]. li-add VO =X))2+ (Y —Y))

tion, our position estimation algorithm has the novel featu 4.3.2.4 Solving the System
of estimating array orientation as well as position. o

In our solution, we first check the input data to remove in-
consistencies, then iterate: construct a system of contstra variables(X;, Y, Zi) to form a Jacobian matri. Once lin-

and an initial "guess”, solve the system, and if any outliers o ;04 ‘the system can be solved using iterative gradéent d
are present, remove them and re-solve. We now detail €achy;q - the variables are initialized with our initial guessd
of these steps: the linearized system is solved to compute a correctiongo th
4.3.2.1 Consistency Check positions, iterating until the corrections drop below amiedi

In the first step, forward and reverse paths are checked fortolerance.
consistency, and inconsistent data is discarded. While itis4,3.2.5 Estimating Orientation
often the case that the forward and reverse ranges might dif-  |n our formulation of the azimuth constraints, we did not
fer by a few cm, large differences are a sign of a detection include the node orientatio®; as a variable, because in-
error. For example, these differences can arise in inssance cluding it prevented the system from converging. Since the
where the line of sight (LOS) path is partially obstructed an node orientation®; are not variables in the azimuth con-
attenuated relative to a reflected path. Although the fodwar straints, we must refine our orientation estimates sepgrate
and reverse path attenuation is symmetrical, a sourceestint  To do this, we recompute the orientation estimates after eac
ference near one receiver can cause an asymmetric measurgmpdate of the position estimates, by computing the average
ment if the attenuated LOS signal is below the noise thresh-residual value for the azimuth constraints for each ripds-
old of one, but not both receivers. ing a vector sum. If we assume that there are no outliers, this

To address these cases, we use the heuristic to accepiverage residual angle represents a correcti@) that will
the shorter range and drop all information about the longer zero the average residual computed this way.
range; since if the long range is caused by a reflection, the  Solving the orientation and positions separately has the
bearing estimate is likely to also be incorrect. disadvantage that a change in one set of variables can coun-
4.3.2.2 |nitial Guess teracta change in the other, resulting in afailure to caywer
To address this, we stop updating the orientation values aft

starting point, from which it will refine. To compute thisini 10 iterations, and allow the positions to adjust until canve

tial guess, we consider one node as the origin and use theJ€"c€: i L .

range and bearing estimates to derive positions and relativ 4.3.2.6 ~ Outlier Rejection Heuristics

orientations for its neighbors. Initial orientation estires Our self-calibration system tends to result in systems that
are determined by “looking back” from a newly positioned are sufficiently over-constrained to support detectionrand
node towards its source. The forward and reverse bearing esj€ction of inconsistent data. We apply several heuristics t
timates should differ by 180 deg, so the difference from that identify and reject inconsistent data that would otheryise

is accounted as a difference in relative orientation. As the add to the estimation error. Our heuristics are based on the
coordinate system grows, node position and orientatidn est observation that one of the most likely sources of signitican
mates can be computed from multiple nodes and averaged. €rror is the detection of a reflected path when the line-of-

. . sight (LOS) path is severely attenuated.
4.3.2.3 Constructing a System of Constraints These errors tend to have two properties. First, whereas

Between each pair of nodes, we can formulate three inde-yy sica| range errors in LOS conditions are under 10 cm,
pendent constraints: range, azimuth and zenith constraint
In these constraints, we consider the orienta@prof each 3Due to space limitations we omit these equations, but they can
node to be a constant value that is estimated separately. be found in [10].

In order to solve these constraints using gradient descent,
they must be “linearized”, or differentiated in terms of the

The gradient descent algorithm requires an approximate




in non-LOS conditions reflections can introduce arbityarii many applications will need to relate this map to real-world
large range errors, often meters or tens of meters. Seand, r coordinates such as GPS.
flections generally produce errors in bearing estimatasesi Most localization schemes address this by specifying cer-
the reflected path often arrives from a different directhemt tain nodes to be “anchors” with exact known locations, and
would a LOS path. We use two methods to identify and re- building the coordinate system around them. While this
ject inconsistent data. approach has natural application in distributed localizat
First, during the node orientation estimation described in schemes, it introduces warping if the range data is not prop-
84.3.2.5, a severe angular inconsistency will appear as arerly compensated to correct the speed of sound. Tempera-
outlier in the distribution of azimuth residuals. Afteradl- ture compensation is subject to measurement error, both be-
ing the system to partially converge, we drop constrairds th  cause air temperature sensors typically have accuradgtimi
are marked by an inconsistent angle, and continue to iterateto about 0.5 degree C, and because of the difficulty of prop-
to convergence. erly shielding the sensor to get a clean reading. Sincerggali
Second, after the system has fully converged, we use thefrom temperature can be as much as 0.2% per degree C, at
method ofstudentized residual® weight the residual er- 80 m range the error from a 0.5 degree offset would be 7 cm,
rors by a measure of how much they impact the system. doubling our typical detection error of 3 cm.
This technique has been used in a similar way in the Active  Instead, we solve the coordinate system matching and
Bat system [38]. If any weighted residual exceeds a fixed scaling problems at once Higting the purely relative posi-
threshold, the constraint with the largest weighted resicu tion estimates to a few known node positions. To implement
dropped and the system is recomputed. this post-facto fit we apply techniques modeled on Procsuste
4.3.2.7 Costs and Convergence Properties shape matching [7]. We apply a four step process to fit the
The position estimation algorithm runs centrally on one of estimated map to the surveyed map:

the nodes. Although the cost of running the algorithm canbe | Filter Scale. Over all pairs of survey locations, we sep-

hig_h, this is not of inordinate concern because this allyorit arately sum the estimated and the actual distances, and
typically runs only once per deployment. derive a scale factor by computing the ratio of the two
The Jacobian matrix that must be solved ig 3 1) by sums. We then scale the estimated map by that factor.

3R matrix, whereN is the number of nodes amis the num- . )
ber of pairs of nodes with valid ranging data. The iterative  ® Filter Translation. We translate the maps so that the

least squares algorithm runs for a minimum of 10 iterations node closest to the centroid is the origin in both maps.
to allow the orientation estimates to settle, and will then-c e Filter Rotation. We compute the 3D rotation about the
tinue until the convergence condition is met. Typicallyyonl central point that results in the closest match.

a few more iterations are required; if 100 iterations are run
convergence is considered to have failed. Outlier rejactio
causes additional costs because the entire algorithnrigre-

after each constraint is dropped. Not onlv d thi h bl cali ¢
In the courtyard experiments described in §5.8lyas ot only aoes this approach enabl€ applications fo prop-
erly interpret the output of the position estimator, it also

10 andR was approximately 70. In these tests, each pass
through the solver took an average of 96 seconds on theSETVeS @s a good way to compare our results to ground truth

ARM processor. On average one outlier was dropped, yield- [N 0ur performance metric.
ing an average run-time of 216 seconds. 5 Experiments and Results
As the number of nodes scales up the cost of solving the  To evaluate the performance of our self-calibration sys-
Jacobian matrix will grow a®(N3). Since we currently have  tem we performed a number of experiments. We performed
only 10 nodes, we have not attempted to address this issuetwo types of experimentscomponent testsin which we
However, in prior experience with similar algorithms [24], tested ranging and bearing performance using a controlled
we have been able to scale to larger networks by solving thetest environment, angystem testsn which we performed
system incrementally, adding a few nodes at a time. end-to-end tests of the whole system, measuring the accu-
At the present time, we have not analyzed the conver- racy of our position and orientation estimation in seveifal d
gence properties of this system. In general, convergence deferent target environments. In all of these tests we placed
pends on the degree of range connectivity, the geometry ofgreat importance on presenting the system with a realistic
the network, and the presence of outliers. In practice we hav environment. For our platform to succeed it must success-
found that the system has always converged when more tharfully self-calibrate in a variety of environments determin
4 nodes are present and each node has at least four rangingy the applications.
neighbors. The environment can present a number of challenges to
4.3.3 Association to Survey Points an acoustic ranging system, including noise, obstructions
The output of the position estimation algorithm will be and reflections from clutter, and weather and environmen-
a self-consistentelative position and orientation map, with  tal conditions. Indoor environments tend to be fairly quiet
a scale relative to the speed of sound. The speed of soundut pose challenges from reverberations and reflections. Th
in air is not a constant, but rather a function of environmen- outdoor acoustic environment is often quite noisy, suffer-
tal parameters, primarily temperature and humidity. While ing from wind noise and different types of background noise
relative coordinates may be sufficient for some application in different environments. Interesting outdoor enviromitse

e Final Translation. Finally, we apply these transforms
to the entire estimated map, and then apply a final trans-
lation to match the survey coordinate system.



(a) Accuracy and Precision of Azimuth Measurements at 5.17 m (b) Distribution of Azimuth Estimation Errors
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Figure 5. (a) and (b) show the accuracy of the bearing estimat as a function of azimuth and zenith. (c) and (d) show
the overall distribution of errors in azimuth and zenith bearing estimates. In (d) we show separate distributions for tie
“midrange” and “overhead” zenith angles.

typically contain clutter near the ground, which can block 5.1 Bearing Estimation Component Testing

or attenuate signals and introduce reflections. Enviroamen  To test bearing estimation, we set up the experiment
tal factors such as wind, temperature, and humidity have anshown in Figure 6 to record bearing estimates with carefully

impact on acoustic time-of-flight systems, as we discussedmeasured ground truth. The test was performed in an park-
in 84.3.3. For our tests, we performed controlled compo- ing structure with significant reverberation and 65-70 dB of

nent tests in enclosed environments, while performing sys- background noise. The emitters were calibrated to chirp at
tem tests in outdoor environments, both urban and forested. 100dB sound pressure level (SPL) at 1 meter. We performed

In the next sections we describe each of our experimentstwo tests: an azimuth test in which we rotated the receiver
in detail, beginning with bearing and range component test- through 360 degrees, and a zenith test in which we turned
ing, and then discussing each of the system tests. the receiver on its side and rotated it 360 degrees to emulate
signals coming from a variety of elevations.

Figure 5 shows the results of the bearing component test.
Figures 5(a) and 5(b) show the precision and accuracy of the
bearing estimator as a function of azimuth, with zenith 0.
While azimuth performance is overall quite good, the results
show a dependence on bearing angle. We do not have a def-
inite explanation for this, although we hypothesize thad it
caused by slight deviations in the placement of the micro-
phones in the array, and by cases in which the array itself
obstructs the signal.

Figures 5(c) and 5(d) show the precision and accuracy of
. ) . X the bearing estimator as a function of zenith angle, with az-
Figure 6. Experimental setup for the bearing estima-  jmyth 90. Note that for zenith angles less than -30 degrees,
tion component test. To measure angular ground truth, a =~ ¢he signal is highly obstructed, because it must pass throug
laser aligned with the receiver in the center is pointed at o around the base of the array. These obstructed cases are
a measured location along the edge of the square. highly inaccurate, but they are also fairly rare in typicet d

ployment scenarios. For zenith angles above -30 degrees,
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(a) Range Measurements from Lot 9 (b) Distribution of Range Estimation Errors, Lot 9 Range Test
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Figure 7. (a) Shows range estimation error relative to groud truth, for our sequence of range experiments. The
bottom axis shows the ground truth distance for an experimet) while the left axis shows the average estimate, with 95%
confidence intervals. The right axis details for each expement, the deviation of the mean estimate from ground truth.
(b) Shows the distribution of errors. The dotted curve showshe fit to a normal distribution if the 17 values with error
larger than 10 cm are dropped.

the results are quite accurate, especially in the “midrange equipment with a 3D accuracy of under 1 cm. For the out-
region from -30 to +45 degrees, where the typical results aredoor urban test we also used a laser to align each array to

within 1 degree of the correct bearing. point at some other array, in order to get both accurate bear-
52 R Estimation C t Testi ing measurements and a diverse set of bearings. For other
: ange £stimation Lomponent lesting tests we used a compass to align the arrays to point approxi-

formance of the ranging component. This testwas performedan area approximately 50x80 m, and calibrated the emitters
in the same parking structure used for the bearing test, andyg chirp at 100dB SPL.

approximately the same environmental conditions, and the
emitters were calibrated to chirp at 100dB SPL at 1 meter.
For this test, the receiver was fixed and the emitter was care-

fully moved along the ground, using a laser range-finder and ground truth, we use the algorithm described in 84.3.3 to fit

measuring taﬂe to e;tabllshlgrm;ng.truth. . the output of our estimation algorithm to our surveyed po-
Figure 7 shows the results of this experiment. To get a gjion data. We then base our performance metrics on the

clearer picture of both accuracy and precision, we perfdrme gigances between points in our map and the corresponding
range tests at a variety of distances and scales, performlngground truth points.

clusters of tests at 1 m, 5 m, 10 m, and 50 m. In Figure 7(a) In Table 1 ¢ | metrics f h test:
we highlight the deviation from ground truth as dashed im- n table 1, we report Several metrcs for each test. aver-
age and median 2D position error, average and median 3D

pulses. We observe that with the exception of a few mea- osition error, and average and median orientation errer. W

surements at 50 m, the magnitude of the error is consistentlyp ' 9 '

less than 5 crf report 2D and 3D separately because our deployments tend
' to be flat, yielding poor constraints in the Z axis and thus

be E;gso en (tjhzsr amn’ itr?e S‘?”r?; 'Bgr?fegSiTﬁStgﬂf'%lflyt’hfﬁge‘igcmUch higher error. In addition, our target source locaiirat
ging sig gan p g applications can localize a target in 2D independently of Z

tion window. The system uses a recording window of 16K tpos;ition estimates. We also report the distributions af est

samples and a ranging signal of 8K samples, meaning tha : - ; oL
. . . . mation errors to give a better perspective on the repedtabil
after 58 m the ranging signal will begin to extend beyond the of the estimation system.

recording window. In other tests, we have extended the sys-
tem range to about 120 m by doubling the recording window, 53.1 Outdoor Urban Test
while incurring a higher computation cost for detection. o

In order to characterize the performance of our system we
must define a performance metric and a method for assess-
ing it. Since we are interested in position error relative to

Two outdoor urban deployments were performed in an
5.3 System Tests outdoor courtyard, shown in Figure 8(a-c). The perspective

To evaluate the performance of the entire system, we per-view in Figure 8(a) shows that the courtyard is a flat, mostly
formed tests in two environments: outdoor urban and out- open space containing planters and tall hedges which some-
door forested. In these tests, we measured ground truth positimes obstruct LOS. It is surrounded by brick buildings that
tion as accurately as we could, using professional surgeyin are good reflectors. The environment has significant levels o
background noise from ventilation fans and nearby roads and

4These errors at 50 m resulted from a loss of sync due to a tem-construction projects, with sound pressure levels typical
porary connectivity failure. the range of 65-70 dB.
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Figure 8. (a) shows a perspective view of the urban courtyardwith reflecting walls and tall, obstructing hedges and
planters. (b), (c) and (d) show the experimental setup for outhree test deployments: Courtyard 1, Courtyard 2, and

the James Reserve in Idyllwild. Ground truth node locationsare indicated by the X's. The ‘+' and arrow indicates

a position and orientation estimate from our system, and theD position error in m is shown in parentheses. Photo
credits: (a) Virtual Earth; (b) and (c) Google Earth; (d) the James Reserve.

We ran four experiments in this environment: two tests forest terrain, the system was better constrained and the 3D
in each of the two deployment configurations shown in Fig- performance improved from 45 cm to 33 cm.
ure 8(b) and (c). A map of node positions is overlaid on each

photo, where X’ represents ground truth and ‘+' represents 5 3 3 Effect of Obstructions and Reflections

the estimated position, with the actual error reported in me Whil did includ f ial ob .
ters. Table 1 summarizes these results as CY1 and CY2. hile our tests did include cases of partial obstruction,
the line of sight (LOS) path was rarelyompletelyob-

To show the error in more detail, Figure 9(a) shows structed. Figure 10 shows results measuring the impact of

an expanded view of the deviation in 2D position for all ; : ; ;
: : adding simulated obstructions and reflections to the CY1 ur-
nodes, from all four courtyard experiments. This graph also ban courtyard data set shown in Figure 8(b). The graphs

shows the error reduction resulting from our outlier refsct . o :
heuristics; in some cases the error is reduced by 50%. Note?'® cumulative distribution functions (CDF)s over all pos-

also that because of the flat topology, the performance of theSiPI€ node pairs, showing the maximum position error ob-
system along the Z axis is much lower than for X and Y. served when a single selected node pair is subject to a sim-

Figure 9(c) shows a histogram of orientation errors rela- ,I[Jrlgtfd(lr)egﬁft;g%c\ggg Xgﬂ)ﬁ:gfci]cgﬂ?emrﬁﬁre&likzretg?:/?)rls(hizw
tive to ground truth, with and without outlier rejection. Wi . ) y

outlier rejection, the distribution is considerably tight better-constrained systems, (2) obstructions that bidgis L
yield less constrained systems and higher error, and (3) re-

5.3.2 Outdoor Forested Test flections accomanied by large angular deviations are egject

Figure 8(d) shows our outdoor forested test at the Jamesmore readily, even with fewer constraints. We now detail the
Reservein |dy||WI|d, CA. We planted 10 stakes in a50x70 m setup for each of the three simulations.

region, using a compass to _align the arrays facing west. CY1 has data for 32 node pairs. For each pair in turn, we
bThe forgast env'rtonr_lr_]ﬁmt's m'uc.h r;]w'ﬁre complexsthant the compute the mean position error inducedifly that pair
urban environment. 1he terramn IS flly, varying o Meers o istars a reflection. The middle curve shows a CDF of

frlortrt1 Iowestt:]o highesC} p((;)int, Wgh ﬁignifice:jni foliaggstand ; mean position error, in which one selected path is extended
clutter near the ground. L5rass, bushes, and trees obstruc eby 10 m; the bad range is rejected in 75% of the cases.

LOS between many pairs of nodes. . .
However, a5 we can see fom Table L and Figure 9, tis , o 1 TR0, Hre, T2 ST BTN S
more complex environment causes only limited degradation - . '
b y g blocking 11 of the 32 pairs. The lower curve shows the CDF

of the localization performance. From courtyard to forest, ; .
the 2D performance degraded from an average error of 5 cmWhen asingle range (possibly one of the 11 blocked ranges)

to 9 cm. Likewise, the accuracy of the orientation estimates 'S €xtended by 10 m. With the simulated obstruction the sys-

tem is less constrained; it can correctly reject the badeang
degraded from an average of 1.3 degrees error to 2.7 de- X
grees® However, because of greater height diversity in the Ny 50% of the time. The top curve shows the CDF for the
obstructed case when the bad range also includes a 45 degree

5The apparent degradation of orientation accuracy at JR may &ngular error. Because in these cases the angular inconsis-

partly be due to errors in ground truth. The arrays were aligned “by tency heuristic applies, the bad range is correctly regeicte
eye” with a small hand-held compass. all but one case.
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Figure 9. Shows the distribution of deviations from ground tuth for our two test environments. The upper set of graphs
shows our system performance in the urban courtyard tests, hile the lower set shows our performance in the James
Reserve. (a) and (d) show the deviation of our 2D position éstates from ground truth, for all 10 nodes in the four
courtyard experiments. If all positions were estimated pefectly, all points would be at (0,0). The three types of point
show the improvement resulting from our outlier rejection heuristics. (b) and (e) show the deviation of Z estimates, vs.
the same Y axis. (c) and (f) show histograms of the deviatiorf our orientation estimates relative to ground truth, with
and without angular outlier rejection. In graph (d), one additional outlier (65,21) was left out of the plot.

In general, resilience to reflections is a function of the ison, as these systems are based on much more resource-
degree of constraint, which is in turn a function of geometry constrained Mica2 hardware.
and range connectivity. While these simulations show that A more fair comparison can be made to Kushwaha [18],
our rejection heuristics are promising, more experimerdgs a who presents a system based on the Vanderbilt counter-
needed to gain a better understanding of the true impact ofsniper platform [22]. The Kushwaha system uses a similar
reflections and obstructions and to characterize the typica approach to ours, substituting a linear frequency sweep in

error in angle of arrival due to reflection. place of our PN code. It employs a matched filter and re-
6 Di . peated, position-modulated chirps to enhance SNR in the
ISCussIon detector. For ranges in excess of 10 m, Kushwaha cites

In the preceding section we presented some detailed re-standard deviations after outlier rejection of about 25 cm,
sults from our component and system testing in several out-compared with 1.7 cm for our system. This difference may
door deployments. We now compare those results to somepe due to the higher process gain and lower autocorrelation
of the related work that we described previously. noise exhibited by our PN codes; on the other hand, our

Our ranging precision after temperature compensation is matched filter is likely more expensive.
generally 5x better than the other audible acoustic systems |n addition to improved precision, our ranging system
from Sallai [31], Kwon [20], and Kushwaha [18]. Sallai has a longer detection range for equivalent power output.
and Kwon do not cite variance estimates, but their graphsIn a test calibrated to match those of Kwon and Kushwaha
show standard deviations of at least 15-25 cm, depending(105 dB SPL at 10 cnfj,our system achieved 60 m range,
on whether or not outliers are rejected, compared with 1.7—
3.8 cm for our system. However, this is not a fair compar- 60ur other tests achieve higher range, but output 100 dB at 1 m.
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Figure 10. CDFs taken over all possible pairs in the CY1
data set, showing the maximum position error observed
when a single selected range pair is subject to a simulated
reflection, with varying simulation parameters.

(15]
[16]
[17]
(18]

2x better than the 20—-30 m cited in Kwon and Kushwaha.
We believe this difference in range is primarily a function [19]
of the coding in our ranging signal and the process gain in
our detector. In addition, longer detection range resuol& i
better constrained system and thus lower positioning atror
any given deployment density.

The results of outdoor system tests also showed improve—[22]
ment over prior work. In an outdoor urban test, our average
2D position error is 50x lower than Kwon'’s reported 2.46 m (23]
error (10x lower when additional simulated ranges are added
to result in 0.48 m). In the more challenging forested en-
vironment our average error doubles, although it is unclear [25]
how the other systems might perform under similar condi-
tions. This improvement is achieved in spite of estimating [26]
the additional variables of vertical height and orientatio
Our results also compare favorably to the simulation result o7
from Kushwaha, who reported a mean 3D position error of
89 cm; compared with 33 cm from our forest experiment.

This work represents a significant improvement in the ac-
curacy of self-localization relative to other work, at a-cor [29]
responding higher computational cost. However, the key [0
advantage of the Acoustic ENSBox is that it also serves
as a general-purpose acoustic sensing platform: the end®
hanced computational resources that enable more accuratesz]
self-localization also enable easy prototyping of a widé-va
ety of localization and classification applications.

[20]

[21]

[24

(28]

(33]
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