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Abstract

Wth the advent of mobile computers, new challenges
arise for software designers. This paper focuses on discon-
nected operation: making mobile computers work well on
shared data whether the network is available or not. Ini-
tially the shared data is cached on the mobile computer.
Modifications and additionsto this cached data will be rec-
onciled with the shared data when the mobile computer is
reconnected to the network. Conflict resolution will be used
to reconcile conflicting changes. In this paper, we examine
these issues by adding support for disconnected operation
to Thor, an object-oriented database.

1 Introduction

As computershecomemore mobile, software needsto
be adaptedo work well, whethera network is availableor
not. The challengingaspects to function without a net-
work andstill have localchangesntegrateeasilywith other
datawhenthe network is available. Initially the mobile
computemeedgo cacherelevantdatabeforedisconnecting
from the network. When network accessibilityagainbe-
comesavailable,additionsandmodificationsto the cached
dataneedto be reconciledwith the original data. Beyond
thisif two usershave modifiedthe samecacheddatawhile
disconnectedsomeform of conflictresolutiormustbeused
to integratethesechanges.This all mustbe donewithout
violating serializability

For example,a travelling salespersonommutingto the
office would like to usehis hand-helddevice to enteran
appointmeninto his calendamwhich is storedin a central
databasatwork. Thehand-heldlevicehasacachedrersion
of the salespersor’calendarwhich was dowvnloadedthe
nightbefore.Meanwhilebackattheoffice,thesalespersos’
assistants sitting in front of a desktopmachineconnected
directly to the central database. The assistantentersan
appointmeninto the salespersos’calendarfor 2 PM to 4

PM, whichis automaticallyupdatedn thecentraldatabase.
After thedatabases updatedoreflecttheassistangscharmge,
thesalespersonn hiswayto work now hasstaledatain his
calendar He thinks that he is free from 2 PM to 4 PM
whenheactuallyhasanappointmenfor thattime. To make
things even worse, the salespersongn his way to work,
also entersan appointmentnto his calendarfor 1 PM to
3 PM. This causesa conflict which mustbe resohed once
the salespersogetsto work andreconnectsis hand-held
deviceto thedatabase.
Severalgenerapropertiebbecomeapparenfrom the ex-
ampledescribed Concurrent modificationsto the samedata
may not always be undesirable. In the caseof thecalendar
if the assistanhadenteredanappointmenfor 12 PM to 2
PM while the salespersomadean appointmenfor 3 PM
to 5 PM, the samesharedcalendardatawould be concur
rently modifiedyetthiswould notviolatetheconsisteng of
the dataeventhoughthe salespersomodifiedhis calendar
whileit containedstaledata. Conflictsare based on applica-
tion semantics. In the calendara conflictis anoverlapping
of appointmentsn time but could be completelydifferent
in anotherapplication. From the user’s perspective, auto-
matic resolution of conflicts upon reconnection is desirable
but may not always be possible; thus flexibility in resolving
conflictsis important. The salespersomaywantall of the
entriesthathe addsto the calendato take precedencever
othersso his assistans conflicting entry would have been
deletedo makeroomfor hisentry. Howevertheremayalso
be specialcasesvherethe salespersowould not wantthis

to apply.
1.1 Problem Statement

The problemof concurreng and shareddatahasbeen
studiedat lengthin the context of databasesThe problem
of shareddata and disconnectedperationhas also been
studiedagreatdealin thecontext of network partitions.But
theproblemof sharedlataanddisconnectedperatiorin the
contet of mobile deviceschangedecausealisconnections



aremorefrequentand more predictablg[12]. As a result,
conflictswill be morelikely. Thereforeintelligentconflict
resolutionis necessargincethe userof the mobile device
will notwantto loseall of the operationghathe or shehas
performedwhile disconnected.

The problemthatthis paperaddressess how to build a
systemthatmanageshareddatain the presencef discon-
nectedoperation. This systemmustaddresghe issuesof
usingstaledatawhile disconnecte@nddealingwith con-
flicting updatesiponreconnection.

1.2 Achieving Consistency

To achiese consisteng a systemcan either usea pes-
simistic or anoptimistic approachln anoptimisticscheme,
usersare allowed to modify shareddatathat may be con-
currentlyaccessedby otherusers.If anoptimisticscheme
is employed and userscanbe disconnectedsomeform of
conflictresolutionis required.

Pessimisticchemepreventconflictsfrom occurringby
permittingmodificationsonly to thatshareddatafor which
the userhasa lock. For the mobile computingsetting,
requiringthe possessionf locks to modify datalimits the
availability of datafor otherusers.

Anotheraspectf achieving corsisteny with shaeddata,
is maintainingserializabilityof data. Thus,a commonway
tohandleconcurrenticcesse® sharedlataisto usetransac-
tionsto aidin achieving bothconsisteng andserializability
of operation®nsharedlata. Traditionalpropertieof trans-
actionsare: atomicity, consistenyg, isolation,anddurability
(ACID) [10].

Varioustransactiormodelsfor mobile computinghave
beenstudiedin [10, 5, 9]. Eachis similar in that wealer
formsof transactiongi.e. weak, tentative, or second-class
transactionsaredefinedfor transactionsnadeon datalocal
to a mobile device while disconnected Using this wealer
notionof transaction®r tentative transactions allows for a
systemto have both consisteng andan optimistic scheme
in thepresencef disconnectionsWhile disconnectedgen-
tative transactionsoperateon locally cacheddata. Each
tentatie transactionis loggedat the disconnectedievice.
Upon reconnectioneachtentatve transactionwill either
commitor abortasit is replayedagainsthe shareddata.

1.3 Flexible Conflict Resolution

Tentatve transactiongesultin the needfor intelligent
conflict resolution. Since potentially all of the tentatve
transactionsnadewhile disconnecteaould be aborted,it
is importantthatthe systememploy conflict resolutionfor
thoseabortedtransactionso that the disconnectedisers
operationsrenotlost.

Dealingwith conflictsor abortsthat occuruponrecon-
nectionis not simple. The problemis that resolutionof
conflictsis definedby applicationsemanticsand providing
generalsupportfor a variety of applicationsis hard. Sys-
temscanautomaticallytry to resolhe conflicts. Anotherway
to resohe the conflictsis to consultthe useruponafailure.
Conflictresolutioncanalsobeleft upto theapplicatiorsince
it is bestawareof its own semantics.In the end,the most
completeapproachto resolvingconflictsis a combination
of systemapplicationandusersupport

Examplesof suchsystemsare Coda,Bayou,andRover
[7, 4, 6]. Thesesystemswill be discussedn greaterdetalil
in Section5 andcomparedvith thesystempresentedhere.

2 Thor Overview

This project usesthe Thor distributed object-oriented
databassysten|8]. Thispaperprovestheserializabilityof
Thor andits ACID properties.In this section,anovervien
of the Thorarchitecturds presented.

2.1 Thor Architecture

Thor providesa persistentstore of objectswhereeach
objecthasa uniqueidentity, setof methodson a per type
basis,andstate.Thesystemhasa client/sener architecture
where seners are repositoriesof persistentobjects. The
senerorobjectrepositoryOR)consistof arootobjectplus
all persistenbbjectsthatarereachabldérom theroot object.
The OR handlesvalidationof transactionsacrossmultiple
clientsby usingan optimistic concurreng control scheme
describedn [1]. Clientsin Thorconsistof afrontend(FE)
andanapplication.The FE handlesachingof objectsfrom
the OR and transactionprocessing. Applicationsoperate
on cachedbjectsatthe FE insidetransactionsndcommit
transactionshroughthe FE to the OR.

2.2 Objectsin Thor

Eachobjectis uniquelyidentifiedby anidentifierknown
asanoref. Orefsarealsousedto locatean objectwithin
pagesattheORandFE. At theOR’s objectsareknown only
by their orefs. Objectsat the FE are cateyorizedas either
persistenr non-persistent.Persistenbbjectsare objects
thatthe OR’s areaware of andthatarereachabldrom the
persistentootobject. Non-persistentbjectsareobjectghat
arenewly createdby anapplicationthathave notyet been
committedat the OR or objectsthat are usedtemporarily
by the applicationandthat will not needto persistacross
differentruns of an application. Persistenbbjectsat the
FE are storedin the persistenttachewhich cacheswhole
pagesfrom the OR. An objectin the persistentachecan
bereachedatthe FE via its oref. Non-persistenbbjectsare



storedin the volatile heapanddo not have orefsuntil they
arecommittedandassignedref's by the OR. To facilitate
programaccesgo objectsatthe FE in the persistentache,
orefsaremappedo local memoryaddresses.

2.3 FE Transaction Logging and Committing
Transactions

Applications make high level operationson objects.
Thesehigh-level operationsn objectsarereducedo reads,
writes, and creationsof objects. Eachof theseis logged
by the FE in orderto createthe correctread,written, and
createdbjectsetsto besentto the ORin acommitrequest.

An applicationcompletesa transactiorby makinga re-
guestotheFEto committhetransactionTheFE processes
this requestby collecting all of the logged commit sets:
thereadobjectset(ROS), modifiedobjectset(MOS), and
new objectset(NOS). Thesesetsaresentto the OR in the
form of acommitrequest.The ROSandMOS will contain
only persistenbbjectsandthe NOSwill containonly those
non-persistentbjectscreatednsidethetransactiorthatare
reachablérom somepersistenbbject. BeforeaNOSis sent
totheORit mustcontainorefs. TheFE maintainssomefree
pagesfor new orefsbut in the eventthatthereareno free
orefsavailable,the OR is contactedo obtainnew orefs.

To handleconcurreng, anORwill validateatransaction
basednwhetheror notthattransactiorreador wroteinval-
idatedobjects. TheORmaintainaperFE setof invalidated
objects. Theseare objectswhosestatehasbecomenvalid
sincethetime the FE cachedthem. An objectatan FE is
invalidatedwhenanother-E successfull)commitsa trans-
actionmodifyingthatobjectsincethecachedrersionis now
stale. FE's arenotified of invalidationsandmustacknawl-
edgethemby invalidatingthe objectsin thepersistentache
sothatif thoseobjectsareeveraccessebly theapplication,
their new statewill befetchedfrom the OR.

The OR can either commit or abortthe FE’s commit
requestlf thetransactions abortecby theOR,the FE must
thenroll backary of the changesnadeby the application.
This includesreverting the stateof modified objectsback
to the original stateprior to the transactiorand removing
ary newly createdobjectsfrom the volatile heap. If the
transactioris committedby the OR, the FE will move ary
newly createdbjectsfromthevolatile heapto thepersistent
cache.

24 Summary of Thor

Thor provides transactioncontrolled accessto shared
data. Its optimistic concurreng schemes appropriateor
disconnectedperatiorandits object-orienteahatureshould
provide somebenefits.

3 Disconnected Operation in Thor

In the previous section,Thor wasintroduced. This sec-
tiondescribesiow we addedlisconnectedperatiorto Thor
[3].

Theapproacho disconnectedperationn Thoris to use
tentatve transactionso manageshareddatawhile discon-
nectedandto provide aframeavork thatenablegheapplica-
tion to handleconflict resolution. The extensionof Thorto
supportdisconnectedlientshastwo main aspects:exten-
sionsto the applicationand extensionsto the FE (caching
andpertransactiorprocessing).

3.1 FE Support for Disconnected Oper ation

FE supportfor disconnectedperationcan be divided
into threephasesThefirstis preparatiorfor disconnection.
Theseconds operatinglisconnectedhandlingtransactions
differently Thethird is reconnectingvith the OR: process-
ing the pendingtransactionsand the commitsand aborts
resultingfrom them.

3.1.1 Preparingfor Disconnect

To preparefor disconnectiorirom the OR, the FE needgo
prefetchobjectsinto the cacheby processingjueriesspeci-
fied by theapplication. Theapplicationmayneeda special
prefetchqueryto ensurehatall the relevantdatais cached
in the FE. Thiswill bediscussedn Section3.2.1.

3.1.2 Operating Disconnected

Oncetheclient hasdisconnectedrom the OR, anapplica-
tionwill attempto committransactionasit normallywould
while connectedWhile disconnecteda commitbecomes
tentative commit meaninghatthe commitcould potentially
be abortedby the OR upon reconnection. While discon-
nected applicationswill operatehe sameaswhenthey are
connectedby making operationson objectsinside trans-
actions. Theseoperationswill changethe stateof cached
objectsatthe FE.

The FE logstentatve transactionsn thetentatve trans-
actionlog. Thislog savesenoughstatepertentatve trans-
actionin orderto replayeachtentative transactioroncethe
FE is reconnectedvith the OR. The applicationis given
anid for eachtentatie transactiorthatthe applicationcan
associatavith operationperformeduringthattransaction.
Thisinformationcanbeusedaterto assistheuserin recov-
ering from anabort. Figure 1 depictsan exampletentatve
transactioriog.

Tentative Transaction
The modelusedin connectedrhor hasthe FE maintain
transactioninformation on a per transactionbasis. This



Tentative Transaction Log

ROS, ={a, b, ¢, d, e}
MOS ={b, c}
NOSlz{d, e f g}
ROS, ={a, b, g}
MOS, ={a}

NOS, ={h}

TT

TT

ROS _={a, e}
MOS _={a, e}
NOS _={i, j, k}
ROSn ={a, b, c}
T, MOS, ={a b}
NOs, ={I,m}

TT

Figure 1. Tentative Transaction Log

information,alsoknown ascommitsets consistof theread
objectset (ROS), the modified objectset (MOS), andthe
new objectset(NOS) createdduring a transaction.When
the applicationcommitsthe transactionduring connected
operation,thesesetsare inserteddirectly into a commit
requestto the OR. But, while disconnectedthesesetsare
maintainedn thetentatve transactiorog.

The definitionsof the commit setschangefor tentatve
transactionsln atentatve transactiorthe ROS may consist
of both persistentobjectsand objectsthat are tentatively
persistent. An objectistentatiely persistenif it wascreated
by someentatvetransactiorthatwastentatively committed
but not yet committedat the OR. This also appliesto the
MOS in atentatve transaction:it canhave both persistent
andtentatvely persistenobjects.In Figurel, TT%, contains
objectgin ROS; sinceit is tentatvely persistenfrom 7'7;.

In atentatve transactioncommit setsmusthave all of
theirreferenceto objectsin orefformatbeforethey aresent
to the OR. Temporaryorefsareassignedo objectsthatare
createdby tentatve transactionsln Figurel, whenT'T; is
storednto thetentatvetransactiorog, reference$o g must
be updatedto the correcttemporaryoref assignedo it in
TT.

In orderto beableto handletheabortof atentatvetrans-
action,eachtentative transactiorin the log mustalsosave
the stateof eachobjectin the MOS prior to its first modifi-
cation. Objectsin theMOS maybemodifiedmultipletimes
but only theinitial stateof the objectbeforeany modifica-
tionsis saved in the log and only the stateafter the final
modificationin the durationof thattransactioris savedin
theMOS.

3.1.3 Reconnect

WhentheFEreconnectwith theOR,synchronizatiownf the
log occursbeforethe FE canproceedwith any connected
operations. Synchronizatiorwith the OR consistsof re-
playingeachtentatve transactionn theorderin whichthey
were committedwhile disconnectedhandlingary aborts,
andalsohandlinginvalidations.

Before sendinga commit requestto the OR, it is nec-
essaryto updatetemporaryorefsin the NOS to permanent
orefs. Permanenotrefsareassigneceitherfrom free space
in the currentpagesat the FE or by contactingthe OR. In
addition,the MOS and NOS may containtemporaryorefs
for tentatively persistenbbjectsandthesemustbe updated
aswell. ThentheFE sendgo theORacommitrequeston-
tainingthe commitsetsstoredfor thetentatve transaction.

The ORwill thencheckif the commitrequesshouldbe
committedor aborted.Therequestill abortif anobjectin
thereador write setof thetransactiorhasbeenmodifiedby
another~E. Whenthe FE recevesthe OR’sresponséo the
commitrequesit will processitheracommitor anabort.
Onacommitthe FE mustinstallnewly createdbjectsfrom
the tentative transactioninto its persistentcache. On an
abort, the FE usesthe saved copiesof modified objectsto
revert thembackto their original statebeforethe tentatve
transactiorandthendeletesewly createdbjectsfrom the
volatile heap.

Whenatentatvetransactioris abortedit is handledsim-
ilarly toaconnecte@bort. But, for atentatvetransactionin
additionto revertingmodifiedobjectsto their statebeforethe
tentatve transactionsubsequententatie transactionghat
dependon that tentatve transactiormustalso be aborted.
Tentatve transactior!"T; depend®nT'T;, wherek < [ if:

(ROS[ NMOSy # @) V (MOS[ NMOSy #
0)V (ROSINNOSk #0)V (MOS; N NOS;, #0).

This definesdependeng sinceT'T; cannot be committed
if it reador modified objectsthat werein an invalid state
(asindicatedby the abortof T'T},). Becausehe abort of
TT, causesthe objectsin NOS;, to be deleted,overall
bookkeepingis simplerif transactionsnvolving references
to NOS; areremovedatthesametime.

In checkingfor dependenciesf a subsequententatve
transactionin the log abortsdueto its dependeng on an
abortedtransactionthenary tentatve transactionslepen-
dentonit mustalsoabort. It is importantto becarefulabout
theorderin which the stateof objectsin atentatie transac-
tion’s MOS arerevertedto their saved state. For example,
TT), with MOSy, = {a} aborts.T'T; with MOS, ={b} isde-
pendenbnTT}, becausROS,; = {a,b}. T'T,,, with MOS,,
={b} isdependentnT'T; becaus&kROS,, = {b}. Sohereis
achainof dependenciesndafterall of thedependeraborts
have beenprocessedthe stateof objecta shouldbe asit
wasbeforeT' T}, andthestateof objectb shouldbeasit was



beforeTT;. In the caseof objectb, it is importantthatits
statebe undonebackwards,first to the saved statein 1T,
andthento the statesavedin T'T;. Thereforewhenaborts
areprocessedhedependenciegrefoundin aforwardscan
but undoingthestateof eachis donein abackwardsprocess
througheachof the dependententatie transactions.

After theentirelog of tentatvetransaction®asbeenpro-
cessednvalidationsarehandled In theproces®f replaying
the tentatve transactionsthe FE may receve invalidation
messagesontainingorefsof objectghathavebecomestale.
Thesestaleobjectsmustbe markedinvalid in the persistent
cache.

After the FE processeall tentative transactionsandin-
validations it mustnotify the applicationof ary failures. It
doesthis by returningto the applicationa setof tentatve
transactiorid’s containingtheid of eachtentative transac-
tion thataborted.

Figure?2 depictsthereconnecprocesdor a samplesce-
nario. The tentatve transactionlog in this casecontains
threetentatvetransactionsI'T; is abortedsincesomeother
FE madeamodificationto objecta whichthisFEhasnotyet
seen.Objectaisin ROS; andM O S; sotheOR mustabort
TT,. TheORalsosendsaninvalidationmessagéor object
a. SinceM0S, N NOS:1 # 0, the FE will automatically
abortTT, without sendinga commitrequesto the OR for
it. T3 is committedsuccessfully Thenthe FE processes
theinvalidationmessagandsendgsheacknavledgemento
theOR.Finally theFE passe®ackto theapplicatiorthelist
of tentative transactiond’s thatfailedto commit.

Application FE OR

Reconnect \

. [ROS=a.b.c
Commit request TT, =

0
MOS=a
0S=d,e]

Invalidation message
Commit reply T

Y.

abort]
T'I'z depends on TlT - request not sent
(MOs, = d)

[ROS=b,c

Commit request TT,

=
[e]
7]
o

0S=f]
Commit reply LS

/[comrni!]

Failed TT's

Invalidation Ack;

Figure 2. Synchronizing the Log

3.2 Application Support for Disconnected Opera-
tion

In additionto the supportprovidedby the FE for discon-
nectedoperationthe applicationmustalsoprovide support
for disconnecteaperation,namelysupportspecificto ap-
plication semantics. This supportcanbe divided into the
threecomponentsf preparingor disconnectionpperating
disconnectedandreconnecting.A specificexampleof an
applicationandthe supportit provideswill be discussedn
Sectiord.1.

3.21 Preparingfor Disconnect

Application specifichoarding queries are usedto prepare
theclientfor disconnectiorfrom the OR. A hoardingquery
is anoperatiornon the persistenbbjectsin the databas¢hat
causedbjectsto be fetchedor hoardedfrom the OR into
the FE cacheprior to disconnectindgrom the OR.

3.2.2 Operating Disconnected

Whendisconnectedattemptingto commita transactiorre-
turnsanid for thetentatve commit. An applicatiorwill use
this id to identify dataassociatedvith the tentative trans-
actionif it shouldabort. This contextual datacaninclude
operationtype, parameterspr priority. Eachoperatiortype
couldalsohave anassociatedesolutionfunctionwhich at-
temptsto usethe savedparameterérom thetentative trans-
action contet to resole a failure to commit. This extra
supportis necessarginceThor providesonly a notification
of conflictsanddoesno resolutionitself.

3.2.3 Reconnect

On reconnectafter the entiretentatve transactiodog has
beenreplayed the applicationrecevesa list of theid’s of
abortedransactiongndthendealswith their resolution.It
doesthis by iteratingthroughthelist of failed transactions
and calling their appropriateresolutionfunctions. In the
procesof calling a resolutionfunction, it is possiblethat
thetransactiorwill be abortedagainanda seriesof nested
callsto resolutionfunctionsandabortsmayoccut

To resolhe aconflict,theapplicationhastheflexibility to
do a variety of resolutionssincethe applicationhascontrol
over whereconflicts are detectedand also hassaved con-
text for eachtransactionWhile Thor providesconserative
abortsemanticghat guaranteeserializabilityof operations
on sharedobjects, successfuketries of a failed tentatve
transactiomactually allow applicationsthat do not require
Thor'sconserativeabortsemantic$o achiezemorerelaxed
semantics.



4 Evaluation

This sectiondiscussesiow well disconnecte@peration
in Thorachieresthegoalsof consistensharediataandflex-
ible conflictresolutiorthroughthedevelopmenbf asample
applicationon top of the Thor framework. In addition,an
analysisof performancés presentedb discusgheoverhead
from disconnectedperation.

4.1 Sample Client Program: A Shared Calendar

A sharedcalendarsystemwas implementedas an ap-
plicationusingthedisconnected hor framework described
in Section3. The calendarsystemmaintainsa databasef
calendarsvhereeachcalendais associatedvith a userbut
multiple usersmay modify a single calendar Concurrent
modificationsto a singlecalendararepossible.A usercan
addanddeleteeventsto andfrom a calendar Eachevent
hasanassociatedayandtime.

The essentiahspecbf the designof the calendarmppli-
cationwasthe datamodellingphaseor developmenif the
applications schema. The schemais the organizationor
structureof the dataasrepresenteih the databaseln the
datamodellingphasat is importantto considethe effect of
concurreng onthe data. It is especiallyimportantin Thor
sinceconflicts are detectedat the granularity of an object
andthereforethe designof the object-orientedschemawill
directly impactwhatconflictsaredetected.In the calendar
applicationconcurrentdditionsof eventsto ausers calen-
dararepermissiblesolong asthey do not overlapin time.
The correctbehaior is for a conflict to be detectedonly
whenconcurrenupdatego the calendamodify eventsthat
conflictin time. However, theseconflicts are not always
significantandin somesituations,a usermay want more
relaxed semantics.Thesesituationscanbe accommodated
with theflexible resolutionof conflicts.

Calendar

Time Slots‘ ‘ ‘ ‘

—
Event

Figure 3. Calendar Schema

To achieve the correctcalendarconflict semanticsn the
calendarapplication, the schemawas designedto detect
conflictsat the granularityof time slot objectsratherthan
theentirecalendapbject. Thisis depictedn Figure3where

the calendaiis a setof time slot objectsandeachtime slot
canbeassignedo someevent. With thisdesignjf two users
concurrentlymodify thesameimeslotobject thenaconflict
will be detectedby Thor. Thisis the correctsemanticgor

aconflictin acalendarnamelywhentwo appointmentsire
madefor overlappingtimes. However sincethe usermay
wantto allow this at times, it is importantto considerthe
conflict resolutionand the different propertiesthat a user
mightwantto beableto havein his calendar

With the describeddesignof the calendarwe maintain
consisteng in additionto getting the correctconflict se-
mantics. Consisteng is maintainedsince multiple users
canconcurrentlyaddeventsto the calendamwithout having
aconflictaslongasatransactiordoesnotreadstaleobjects
in the calendar An additionalfactorto considetin the cal-
endarapplicationdesignis thata transactiorthatwritesan
event shouldbe carefulnot to include readsof othertime
slots. This requiresthatthe applicationdeveloperbe very
carefulin the organizationof commit pointsin the appli-
cation. For example,in a transactiorthataddsan eventto
the calendarthe applicationshouldnot alsoreadall of the
objectdn thecalendaysincethiswill increasehelik elihood
of anabort.

Conflictresolutionin the calendalapplicationis flexible
sinceit is possiblefor the applicationto have control over
whereconflictsaredetectedIn the caseof thecalendarwe
know thatconflictsareovertimeslots,soif aconflictoccurs,
we know it is becauseanotheruserhasalreadymodified
that sametime slot. It is then up to the applicationto
dealwith this conflict. In orderto be ableto dealwith a
conflictthe applicationneedgo understandhe context for
atransaction.Therefore asdiscussedn section3.2.2,the
calendarapplicationsaves the high-level operationamade
by thetransactiorandary argumentgo the operations.

Usingthe saved context andhaving fine-grainedcontrol
over conflict detectionthroughthe designof the applica-
tion schemaany numberof policiescanbeimplementedo
resole conflicts.

4,2 Performance

Theoverall performancef the Thor systemis discussed
in [1]. Thor comparesfavorably with similar systems
in termsof throughputand scalability This sectiondis-
cussedhe addedoverheadof supportingdisconnecteap-
eration. First, the numberof tentatve transactionss lim-
ited by the amountof memoryin the client. The overhead
variesby the numberof tentatve transactionsn the log,
theread:write:n& objectratio in the commitsets,andthe
level of contentionor percentagef abortsfor agivennum-
ber of tentative transactionsn the log. The remainderof
thissectionwill discusgheoverheadf disconnectedper
ationin Thor usingexperimentshasedon the OO7 bench-



markwhichprovidesacompreheaivetestof objectoriented
databasenanagemergystemperformance.The detailsof
thisbenchmarlaredescribedn [2].

In comparisonto connectedperationin Thor, the de-
sign of disconnectedperationin Thor hasseveral differ-
enceghataffectperformanceThesdlifferenceoccurboth
while operatingdisconnecte@nduponreconnection.Ex-
perimentswere conductedwith a single FE and OR. The
OR wasrun on a 400 Mhz dual Pentiumll with 128 MB
of RAM runningtheLinux Redhatistribution6.2. The FE
wasrun a 450 Mhz Pentiumll with 128 MB of RAM run-
ning Linux Redhatdistribution 6.2. The FE cachesizefor
all experimentsvas24MB. All communicatiorbetweerthe
two machinesvason anisolatednetwork sothatvariations
in network traffic would not affect the experimentaresults.

Eachexperimentusesan OO7 traversalto comparecon-
nectedvith disconnectedpeiation Thedifferencebetween
disconnectedand connectedoperationoccursat commit
points. During connectedbperation,the applicationsim-
ply waits for the responsgo a commit requestfrom the
OR. In disconnectedperation,a commit hastwo parts.
Thefirst partis to tentatvely committhe transactiorwhile
disconnected.This placesthe transactionin the tentatve
transactionog. The secondpartis to reconnecand send
thetentative transactiorirom thelog to the OR asacommit
request.

Upon reconnectionreplay of the log incurstwo major
coststhat do not occurin connectedcommits. The first
overheadincurredis, in preparationto sendthe tentatve
transactiomas a commit requesto the OR, newly created
objectsthat have temporaryorefsmustbe updatedo have
new permanenbrefs. Gettingpermanenbrefsis acostthat
is alsoincurredduringconnecteg@ommits,howeverobjects
in the MOS and NOS needto be updatedwith thesenew
orefs. Thisupdatingncurstheextracostof asecondraver-
sal of the objectsin the MOS and NOS for all tentatvely
committedtransactioné thelog.

We evaluatedhe averageoverheado be 36.32%for up-
datingtemporaryorefson logs rangingfrom 10-100tenta-
tivetransactionsvith aworkloadof anOO7insertionquery
with 5 new compositeobjectsand 2 modified objectsper
transaction.The growth of the time to tentatvely commit
andreconnecis linear with respectto the numberof ten-
tative transactions.However it doesgrow at a fasterrate
thanconnectedommits. Thisis dueto anincreasinghum-
ber of permanenbrefsto searchthroughwhenreplacing
temporaryorefswith permanenbnes.

Thesecondnajorsourceof overheadrom disconnected
operatiorcomedrom aborts.If atransactions abortedthe
log mustbe updatedto abortary dependentransactions.
This dependeng checkhasthe extra costof scanningthe
log with a backwardsundo (asdescribedn Section3.1.3)
eachtime anaborthappens.

007 T2a: Tentatitive Commit + Reconnect vs. Commit with Moderate Abort Rate
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Experimentavere conductedn bothlow andmoderate
contentionabortrate)ervironmentssimilarto experiments
madeby Adya for concurreng controlstudiesin Thor [1].
The experimentamake useof the OO7 T2atraversalrather
thanthe Tnew sincethe Tnew traversalcreatesdependent
tentatve transactions.By usingthe T2atraversalboththe
low and moderateabort rate experimentshave no depen-
denciesbetweentransactiongo shav the caseof maximal
scanning Figure4 shovstheresultsfor anOO7 T2atraver-
sal with a 20% abort rate which is consideredmoderate
contention.Theresultsfor alow 5% abortrateshow similar
trends.

5 Reated Work

Providing consistenshareddatain the presencef dis-
connecteeperatioris notanew problem.Researchetsave
analyzedheissuesandsystem$ave beenmplementedhat
supportdisconnectedperationrandthe sharingof data.

The major relevant analytical work is [11]. Discon-
nectedoperationin Thor largely implementsthe behaior
describedn the cachingexamplein this paper:the mobile
computerperformsweak transactionshile disconnected.
Thesdransactionarecommittedonly if they donotconflict
with the strict transactionst the sener. Beyond actually
implementinghismodel,we havestartedo understantiow
applicationscanmake useof this system.

SomeimplementationéncludeBayou,Rover, andCoda
asmentionedn Sectionl1.3. Having discussedhe design
of disconnectedperationin Thor and evaluatedits effec-
tivenessin achieving consistentshareddatawith flexible
conflict resolution,this sectionvisits eachof the systems
describedn Sectionl1.3to seehow they compare.In gen-
eraleachsystenusesasimilarnotionof “tentative” datafor
datamodifiedwhile disconnectettut hasdifferentmethods
for handlingconcurreng andconflicts.



Codasupportsdisconnecteaperationbut it is oriented
arounda file system. Conflicts are detectedonly at the
granularity of files which gives an applicationmuch less
control over the semanticof conflicts. Thor on the other
hand,canbe usedfor a variety of applicationswheredata
easily fits into an object model where objectsare small.
However if an applicationis concernedover file-sharing
suchasin a collaborate documentediting system,Coda
mayactuallybea moresuitablechoice.

Both Bayou and Rover do not provide for ary built-in
notion of consistenyg. It is up to the applicationto define
in its proceduresghecksfor conflictsandthe procedureso
resole them. Thor takes someof the burdenof this away
from theapplicationby having built-in conflictsdetectedn
objects.While it is truethattheapplicationdoesplayarole
in defining conflicts sincethe applicationschemamustbe
carefullydesignedo achieve thecorrectconflict semantics,
Thor providesa frameawork with which the applicationcan
work. In additionthis framework is a familiar onesinceit
is essentiallytheframavork of anobject-orienteghrogram-
ming language.

Bayou and the approachto disconnectedperationin
Thor aresimilar in that application-specificonflict detec-
tion and resolutionare facilitated. Bayou’s dependeng
check procedureis analogousto schemadesignin Thor
sincethe mannerin which the schemas designedcontrols
what conflicts are detected. Bayou's memge-procfunction
is analogougo applicationconflict resolutionin Thor. The
differencebetweenthe two is that thereis no built in no-
tion of consisteng in Bayou. While Thor allows for an
applicationto have controlover whereconflictswill be de-
tected the serializabilityof datawill notbe violatedat any
point. Thor could perhapsenefitfrom Bayou's notion of
merge-procs.SinceThor applicationanustnow includeall
conflict resolutioncodeinsidethe application,it would be
beneficialto addto Thor, a frameawork for applicationsto
write resolutionfunctionsor perhapsvenselectfrom a set
of commonresolutionfunctions.

6 Conclusion

This paperhasdescribeda systemthat can, with more
experimentationbe extendedto supporta variety of appli-
cations. Theseapplicationswill behae well usingshared
datawhetherthe network is availableor not.

Disconnectedperationin Thor suitsa variety of appli-
cationssinceit canprovidestrictconsisteng rulesfor appli-
cationghatrequirethemsuchasabankingsystenor airline
resenation system. Yet, with the framework provided, it
alsoallows applicationswith morerelaxed consisteng re-
guirementgo have enoughcontrol over conflictsandtheir
resolutionto achieve moreflexible consisteng semantics.
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