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Abstract

The Internet is composed of many independent au-
tonomous systems (ASes) that exchange reachability infor-
mation to destinations using the Border Gateway Proto-
col (BGP). Network operators in each AS configure BGP
routers to control the routes that are learned, selected, and
announced to other routers. Faults in BGP configuration
can cause forwarding loops, packet loss, and unintended
paths between hosts, each of which constitutes a failure of
the Internet routing infrastructure.

This paper describes the design and implementation of
rcc, the router configuration checker, a tool that finds faults
in BGP configurations using static analysis. rcc detects
faults by checking constraints that are based on a high-level
correctness specification. rcc detects two broad classes of
faults: route validity faults, where routers may learn routes
that do not correspond to usable paths, and path visibil-
ity faults, where routers may fail to learn routes for paths
that exist in the network. rcc enables network operators
to test and debug configurations before deploying them in
an operational network, improving on the status quo where
most faults are detected only during operation. rcc has been
downloaded by more than sixty-five network operators to
date, some of whom have shared their configurations with
us. We analyze network-wide configurations from 17 differ-
ent ASes to detect a wide variety of faults and use these
findings to motivate improvements to the Internet routing
infrastructure.

1 Introduction

This paper describes the design, implementation, and
evaluation of rcc, the router configuration checker, a tool
that uses static analysis to detect faults in Border Gateway
Protocol (BGP) configuration. By finding faults over a dis-
tributed set of router configurations, rcc enables network
operators to test and debug configurations before deploying
them in an operational network. This approach improves on
the status quo of “stimulus-response” debugging where op-

erators need to run configurations in an operational network
before finding faults.

Network operators use router configurations to provide
reachability, express routing policy (e.g., transit and peer-
ing relationships [28], inbound and outbound routes [3],
etc.), configure primary and backup links [17], and perform
traffic engineering across multiple links [14]. Configuring a
network of BGP routers is like writing a distributed program
where complex feature interactions occur both within one
router and across multiple routers. This complex process is
exacerbated by the number of lines of code (we find that a
500-router network typically has more than a million lines
of configuration), by configuration being distributed across
the routers in the network, by the absence of useful high-
level primitives in today’s configuration languages, by the
diversity in vendor-specific configuration languages, and by
the number of ways in which the same high-level function-
ality can be expressed in a configuration language. As a re-
sult, router configurations are complex and faulty [3, 24].

Faults in BGP configuration can seriously affect end-to-
end Internet connectivity, leading to lost packets, forward-
ing loops, and unintended paths. Configuration faults in-
clude invalid routes (including hijacked and leaked routes);
contract violations [13]; unstable routes [23]; routing
loops [8, 10]; and persistently oscillating routes [1, 19, 35].
Section 2 discusses the problems observed in operational
networks in detail. We find that rcc can detect many of these
configuration faults.

Detecting BGP configuration faults poses several chal-
lenges. First, defining a correctness specification for BGP
is difficult: its many modes of operation and myriad tun-
able parameters permit a great deal of flexibility in both
the design of a network and in how that design is imple-
mented in the configuration itself. Second, this high-level
correctness specification must be used to derive a set of
constraints that can be tested against the actual configura-
tion. Finally, BGP configuration is distributed—analyzing
how a network configuration behaves requires both synthe-
sizing distributed configuration fragments and representing
the configuration in a form that makes it easy to test con-



straints. This paper tackles these challenges and makes the
following three contributions:

First, we define two high-level aspects of correctness—
path visibility and route validity—and use this specification
to derive constraints that can be tested against the BGP con-
figuration. Path visibility says that BGP will correctly prop-
agate routes for existing, usable IP-layer paths; essentially,
it states that the control path is propagating BGP routes cor-
rectly. Route validity says that, if routers attempt to send
data packets via these routes, then packets will ultimately
reach their intended destinations.

Second, we present the design and implementation of
rcc. rcc focuses on detecting faults that have the potential
to cause persistent routing failures. rcc is not concerned
with correctness during convergence (since any distributed
protocol will have transient inconsistencies during conver-
gence). rcc’s goal is to detect problems that may exist in
the steady state, even when the protocol converges to some
stable outcome.

Third, we use rcc to explore the extent of real-world BGP
configuration faults; this paper presents the first published
analysis of BGP configuration faults in real-world ISPs. We
have analyzed real-world, deployed configurations from 17
different ASes and detected more than 1,000 BGP configu-
ration faults that had previously gone undetected by opera-
tors. These faults ranged from simple “single router” faults
(e.g., undefined variables) to complex, network-wide faults
involving interactions between multiple routers. To date,
rcc has been downloaded by over 65 network operators.

Although rcc is actually intended to be used before con-
figurations are deployed, rcc discovered many faults that
could potentially cause failures in live, operational net-
works. These include: (1) faults that could have caused net-
work partitions due to errors in how external BGP informa-
tion was being propagated to routers inside an AS, (2) faults
that cause invalid routes to propagate inside an AS, and (3)
faults in policy expression that caused routers to advertise
routes (and hence potentially forward packets) in a man-
ner inconsistent with the AS’s desired policies. Our find-
ings indicate that configuration faults that can cause serious
failures are often not immediately apparent (i.e., the failure
that results from a configuration fault may only be triggered
by a specific failure scenario or sequence of route adver-
tisements). If rcc were used before BGP configuration was
deployed, we expect that it would be able to detect many
immediately active faults.

Our analysis of real-world configurations suggests that
most configuration faults stem from three main causes.
First, the mechanisms for propagating routes within a net-
work are overly complex. The main techniques used to
propagate routes scalably within a network (e.g., “route re-
flection with clusters”) are easily misconfigured. Second,
many configuration faults arise because configuration is dis-
tributed across routers: even simple policy specifications re-

quire configuration fragments on multiple routers in a net-
work. Third, configuring policy often involves low-level
mechanisms (e.g., “route maps”, “community lists”, etc.)
that should be hidden from network operators.

The rest of this paper proceeds as follows. Section 2
provides background on BGP configuration. Section 3 de-
scribes the design of rcc. Sections 4 and 5 discuss rcc’s path
visibility and route validity tests. Section 6 describes imple-
mentation details. Section 7 presents configuration faults
that rcc discovered in 17 operational networks. Section 8
addresses related work, and Section 9 concludes.

2 Background and Motivation

Today’s Internet comprises over 17,000 independently
operated ASes that exchange reachability information using
BGP [31]. BGP distributes routes to destination prefixes via
incremental updates. Each router selects one best route to
a destination, announces that route to neighboring routers,
and sends updates when the best route changes. Each BGP
update contains several attributes. These include the des-
tination prefix associated with the route; the AS path, the
sequence of ASes that advertised the route; the next-hop,
the IP address that the router should forward packets to in
order to use the route; the multi-exit discriminator (MED),
which a neighboring AS can use to specify that one route
should be more (or less) preferred than routes advertised at
other routers in that AS; and the community value, which is
a way of labeling a route.

BGP’s configuration affects which routes are originated
and propagated, how routes are modified as they propagate,
which route each router selects from multiple options, and
how routes propagate between routers. A single AS can
have anywhere from two or three routers to many hundreds
of routers. A single router’s configuration can range from
a few hundred lines to more than 10,000 lines. In practice,
a large backbone network may have more than a thousand
different policies configured across hundreds of routers.

To understand the extent to which this complex config-
uration is responsible for the types of failures that occur
in practice, we studied the archives of the North Amer-
ican Network Operators Group (NANOG) mailing list,
where network operators report operational problems, dis-
cuss operational issues, etc. [27]. Because the list has re-
ceived about 75,000 emails over the course of ten years,
we first clustered the emails by thread and pruned threads
based on a list of about fifteen keywords (e.g., “BGP”, “is-
sue”, “loop”, “problem”, “outage”). We then reviewed these
threads and classified each of them into one or more of the
categories shown in Figure 1.

This informal study shows some clear trends. First, many
routing problems are caused by configuration faults. Sec-
ond, the same types of problems continually appear. Third,
BGP configuration problems continually perplex even ex-
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Figure 1. Number of threads discussing routing faults on
the NANOG mailing list.

perienced network operators. A tool that can detect config-
uration faults will clearly benefit network operators.

3 rcc Design

rcc analyzes both single-router and network-wide prop-
erties of BGP configuration and outputs a list of configura-
tion faults. rcc checks that the BGP configuration satisfies a
set of constraints, which are based on a correctness specifi-
cation. Figure 2 illustrates rcc’s high-level architecture.

We envision that rcc has three classes of users: those that
wish to run rcc with no modifications, those that wish to
add new constraints concerning the existing specification,
and those that wish to augment the high-level specifica-
tion. rcc’s modular design allows users to specify other con-
straints without changing the system internals. Some users
may wish to extend the high-level specification to include
other aspects of correctness (e.g., safety [20]) and map those
high-level specifications to constraints on the configuration.

Section 3.1 describes how we factor distributed config-
uration to reason about its behavior and how rcc generates
a normalized representation of the configuration that facili-
tates constraint checking. To detect configuration faults, we
must specify, at a high level, correct behavior for an Inter-
net routing protocol; we outline this specification in Sec-
tion 3.2. Using this high-level specification and our method
for reasoning about configuration as a guide, we must then
derive the actual correctness constraints that rcc can check
against the normalized configuration. Section 3.3 explains
this process.

3.1 Factoring Routing Configuration

In this section, we describe a systematic approach to an-
alyze BGP configuration. We factor a network’s configura-
tion into the following three categories:

1. Dissemination. A router’s configuration determines
which other routers that router will exchange BGP routes
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Figure 2. Overview of rcc.
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Figure 3. Factoring BGP configuration.

with. A router has two types of BGP sessions: those to
routers in its own AS (internal BGP, or “iBGP”) and those
to routers in other ASes (external BGP, or “eBGP”). A small
AS with only two or three routers may have only 10 or 20
BGP sessions, but large backbone networks typically have
more than 10,000 BGP sessions, more than half of which
are iBGP sessions. Dissemination primarily concerns flexi-
bility in iBGP configuration.

The session-level BGP topology determines how BGP
routes propagate through the network. In small networks,
iBGP is configured as a “full mesh” (every router connects
to every other router). To improve scalability, larger net-
works typically use route reflectors. A route reflector se-
lects a single best route and announces that route to all of
its “clients”. Route reflectors can easily be misconfigured
(we discuss iBGP misconfiguration in more detail in Sec-
tion 4). Incorrect iBGP topology configuration can create
persistent forwarding loops and oscillations [20].

2. Filtering. A router’s configuration can prevent a cer-
tain route from being accepted on inbound or readvertised
on outbound. Configuring filtering is complicated because
global behavior depends on the configuration of individual
routers. A router may “tag” an incoming route to control
whether some other router in the AS filters the route.

3. Ranking. Any given router may learn more than one
route to a destination, but must select a single best route.
Configuration allows a network operator to specify which
route is the most preferred route to the destination among
several candidates.

Configuration also manipulates route attributes for one



Table Description
global options router, various global options (e.g., router ID)
sessions router, neighbor IP address, eBGP/iBGP,

pointers to policy, options (e.g.RR client)
prefixes router, prefix originated by this router
import/export filters normalized representation of filter: IP range,

mask range, permit or deny
import/export policies normalized representation of policies
loopback address(es) router, loopback IP address(es)
interfaces router, interface IP address(es)
static routes static routes for prefixes

Derived or External Information
undefined references summary of policies and filters that a BGP

configuration referenced but did not define
bogon prefixes prefixes that should always be filtered on

eBGP sessions [7]

Table 1. Normalized configuration representation.

of the following reasons: (1) controlling how a router ranks
candidate routes, (2) controlling the “next hop” IP address
for the advertised route, and (3) labeling a route to control
whether another router filters it.

rcc implements the normalized representation as a set of
relational database tables. This approach allows constraints
to be expressed independently of router configuration lan-
guages. As configuration languages evolve and new ones
emerge, only the parser must be modified. It also facilitates
testing network-wide properties, since all of the information
related to the network’s BGP configuration can be summa-
rized in a handful of tables. A relational structure is natural
because many sessions share common attributes (e.g., all
sessions to the same neighboring AS often have the same
policies), and many policies have common clauses (e.g., all
eBGP sessions may have a filter that is defined in exactly
the same way). Table 1 summarizes these tables; Section 6.1
details how rcc populates them.

3.2 Defining a Correctness Specification

rcc’s correctness specification uses our previous work on
the routing logic [10] as a starting point. rcc checks two
aspects of correctness: path visibility and route validity. In
the context of BGP, a route is a BGP message that advertises
reachability to some destination via an associated path. A
path is a sequence of IP hops (i.e., routers) between two
IP addresses. We say that a path is usable if it: (1) reaches
the destination, and (2) conforms to the routing policies of
ASes on the path.

Path visibility implies that every router learns at least one
route for each destination it can reach via a usable path. Path
visibility may be violated by problems with either dissemi-
nation or filtering. An example of a path visibility violation
is an iBGP configuration that prevents the dissemination
of BGP routes to external destinations, even though usable
paths to those destinations exists.

Route validity implies that every route learned by a
router describes a usable path, and that this path corre-
sponds to the actual path taken by packets sent to the des-
tination. Problems with dissemination or filtering can cause
route validity violations. A forwarding loop is an example
of a route validity violation: a router learns a route for a
destination, but traffic sent on the corresponding path never
reaches that destination.

rcc finds path visibility and route validity violations in
BGP configuration only. To make general statements about
path visibility and route validity, rcc assumes that the in-
ternal routing protocol (i.e., interior gateway protocol, or
“IGP”) used to establish routes between any two routers
within a AS is operating correctly. BGP requires the IGP to
operate correctly because iBGP sessions may traverse mul-
tiple IGP hops and because the “next hop” for iBGP-learned
routes is typically several IGP hops away.

The correctness specification that we have presented ad-
dresses static properties of BGP, not dynamic behavior (i.e.,
its response to changing inputs, convergence time, etc.).
BGP, like any distributed protocol, may experience periods
of transient incorrectness in response to changing inputs.
rcc detects faults that cause persistent failures. Previous
work has studied sufficient conditions on the relationships
between iBGP and IGP configuration that must be satisfied
to guarantee that iBGP converges [20]; these constraints re-
quire parsing the IGP configuration, which rcc does not yet
check. The correctness specifications and constraints in this
paper assume that, given stable inputs, the routing protocol
eventually converges to some steady state behavior.

Currently, rcc only detects faults in the BGP configu-
ration of a single AS (a network operator typically does not
have access to the BGP configuration from other ASes). Be-
cause an AS’s BGP configuration explicitly controls both
dissemination and filtering, many configuration faults, in-
cluding partitions, route leaks, etc., are evident from the
BGP configuration of a single AS.

3.3 Deriving Constraints and Detecting Faults

Deriving constraints on the configuration itself that guar-
antee that the correctness specification is satisfied is chal-
lenging. We reason about how the aspects of configuration
from Section 3.1 affect each correctness property and derive
appropriate constraints for each of these aspects. Specifi-
cally, Table 2 summarizes the correctness constraints that
rcc checks, which follow from determining which aspects
of configuration (from Section 3.1) affect each aspect of
the correctness specification (from Section 3.2). These con-
straints are an attempt to map the path visibility and route
validity specifications to constraints on BGP configuration
that can be checked against the actual configuration.

Ideally, operators would run rcc to detect configuration
faults before they are deployed. Some of rcc’s constraints
detect faults that would most likely become active immedi-



Problem Possible Active Fault
Path Visibility

Dissemination Problems
Signaling partition: Router may learn a suboptimal route

- of route reflectors or none at all.
- within a RR “cluster”
- in a “full mesh”

Routers with duplicate: Routers may incorrectly drop routes.
- loopback address
- cluster ID

iBGP configured on one end Routers won’t exchange routes.
iBGP not to loopback iBGP session fails when one interface fails.

Route Validity
Filtering Problems
transit between peers Network carries traffic “for free”.
inconsistent export to peer Violation of contract.
inconsistent import Possible unintentional “cold potato” routing.
eBGP session:

- w/no filters
- w/undef. filter
- w/undef. policy

filter:
- w/missing prefix

policy:
- w/undef. AS path
- w/undef. community
- w/undef. filter

• leaked internal routes
• re-advertising bogus routes
• accepting bogus routes from neighbors
• unintentional transit between peers

Dissemination Problems
prepending with bogus AS AS path is no longer valid.
originating unroutable dest. Creates a blackhole.
incorrect next-hop Other routers may be unable to reach the

routes for a next-hop that is not in the IGP.

Miscellaneous
Decision Process Problems
nondeterministic MED
age-based tiebreaking Route selection depends on message order.

Table 2. BGP configuration problems that rcc detects and
their potentially active faults.

ately upon deployment. For example, a router that is adver-
tising routes with an incorrect next-hop attribute will imme-
diately prevent other routers that use those routes from for-
warding packets to those destinations. In this case, rcc can
help the operator diagnose configuration faults and prevent
them from introducing failures on the live network.

Many of the constraints in Table 2 concern faults that
could remain undetected even after the configuration has
been deployed because they remain masked until some se-
quence of messages triggers them. In these cases, rcc can
help operators find faults that could result in a serious fail-
ure. Section 4 describes one such path visibility fault involv-
ing dissemination in iBGP in further detail. In other cases,
checking constraints implies some knowledge of high-level
policy (recall that a usable path conforms to some high-
level policy). In the absence of a high-level policy specifi-
cation language, rcc must make inferences about a network
operator’s intentions. Section 5 describes several route va-
lidity faults where rcc must make such inferences.

Potentially Active Faults

End−to−End
Failures

Faults found by

Latent Faults

rcc

Figure 4. Relationships between faults and failures.

3.4 Completeness and Soundness

rcc’s constraints are neither complete nor sound; that
is, they may not find all problematic configurations, and
they may complain about harmless deviations from best
common practice. However, practical static analysis tech-
niques for program analysis are typically neither complete
nor sound [25]. Figure 4 shows the relationships between
classes of configuration faults and the class of faults that
rcc detects. Latent faults are faults that are not actively caus-
ing any problems but nonetheless violate the correctness
constraints. A subset of latent faults are potentially active
faults, for which there is at least one input sequence that
is certain to trigger the fault. For example, an import pol-
icy that references an undefined filter on a BGP session to
a neighboring AS is a potentially active fault, which will
be triggered when that neighboring AS advertises a route
that ought to have been filtered. When deployed, a poten-
tially active fault will become active if the corresponding
input sequence occurs. An active fault constitutes a routing
failure for that AS.

Some active faults may ultimately appear as end-to-end
failures. For example, if an AS advertises an invalid route
(e.g., a route for a prefix that it does not own) to a neigh-
boring AS whose import policy references an undefined fil-
ter, then some end hosts may not be able to reach destina-
tions within that prefix. Note that a potentially active fault
may not always result in an end-to-end failure if no path be-
tween the sources and destinations traverses the routers in
the faulty AS.

rcc detects a subset of latent (and hence, potentially ac-
tive) faults. In addition, rcc may also report some false
positives: faults that violate the constraints but are be-
nign (i.e., the violations would never cause a failure). Ide-
ally, rcc would detect fewer benign faults by testing the
BGP configuration against an abstract specification. Unfor-
tunately, producing such a specification requires additional
work from operators, and operators may well write incor-
rect specifications. One of rcc’s advantages is that it pro-
vides useful information about configuration faults without
requiring any additional work on the part of operators.

Our previous work [10] presented three properties in
addition to path visibility and route validity: information
flow control (this property checks if routes “leak” in vio-



lation of policy), determinism (whether a router’s prefer-
ence for routes depends on the presence or absence of other
routes), and safety (whether the protocol converges) [21].
This work treats information flow control as a subset of va-
lidity. rcc does not check for faults related to determinism
and safety. Determinism cannot be checked with static anal-
ysis alone. Safety is a property that typically requires access
to configurations from multiple ASes; in recent work, we
have explored how to guarantee safety with access to con-
figurations of only a single AS [11].

4 Path Visibility Faults

Recall that path visibility specifies that every router that
has a usable path to a destination learns at least one valid
route to that destination. It is an important property because
it ensures that, if the network remains connected at lower
layers, the routing protocol does not create any network
partitions. Table 2 shows many conditions that rcc checks
related to path visibility; in this section, we focus on iBGP
configuration faults that can violate path visibility and ex-
plain how rcc detects these faults.

Ensuring path visibility in a “full mesh” iBGP topology
is reasonably straightforward; rcc checks that every router
in the AS has an iBGP session with every other router. If
this condition is satisfied, every router in the AS will learn
all eBGP-learned routes.

Because a “full mesh” iBGP topology scales poorly, op-
erators often employ route reflection [2]. A subset of the
routers are configured as route reflectors, with the config-
uration specifying a set of other routers as route reflector
clients. Each route reflector readvertises its best route ac-
cording to the following rules: (1) if the best route was
learned from an iBGP peer, the route is readvertised to all of
its route reflector clients; (2) if it was learned from a client
or via an eBGP session, the route is readvertised on all iBGP
sessions. A router does not readvertise iBGP-learned routes
over regular iBGP sessions. If a route reflector client has
multiple route reflectors, those reflectors must share all of
their clients and belong to a single “cluster”.

A route reflector may itself be a client of another route
reflector. Any router may also have iBGP sessions with
other routers. We use the set of reflector-client relationships
between routers in an AS to define a graph G, where each
router is a node and each session is either a directed or
undirected edge: a client-reflector session is a directed edge
from client to reflector, and other iBGP sessions are undi-
rected edges. An edge exists if and only if (1) the config-
uration of each router endpoint specifies the loopback ad-
dress of the other endpoint1 and (2) both routers agree on
session options (e.g., MD5 authentication parameters). G
should also not have partitions at lower layers. We say that
G is acyclic if G has no sequence of directed and undirected

W

YX

Z

route r1 to d

route r2 to d

Route Reflector (RR)

Client
RR

Client

Figure 5. In this iBGP configuration, route r2 will be dis-
tributed to all the routers in the AS, but r1 will not. Y and
Z will not learn of r1, leading to a network partition that
won’t be resolved unless another route to the destination
appears from elsewhere in the AS.

edges that form a cycle. To ensure the existence of a stable
path assignment, G should be acyclic.

Even a connected directed acyclic graph of iBGP ses-
sions can violate path visibility. For example, in Figure 5,
routers Y and Z do not learn route r1 to destination d
(learned via eBGP by router W ), because X will not read-
vertise routes learned from its iBGP session with W to other
iBGP sessions. We call this path visibility fault an iBGP
signaling partition; a path exists, but neither Y nor Z has a
route for it. Note that simply adding a regular iBGP session
between routers W and Y would solve the problem.

In addition to causing network partitions, iBGP signaling
partitions may result in suboptimal routing. For example, in
Figure 5, even if Y or Z learned a route to d via eBGP, that
route might be worse than the route learned at W . In this
case, Y and Z would ultimately select a suboptimal route to
the destination, an event that an operator would likely fail
to notice.

rcc detects iBGP signaling partitions. It determines if
there is any combination of eBGP-learned routes such that
at least one router in the AS will not learn at least one route
to the destination. The following result forms the basis for
a simple and efficient check.

Theorem 4.1 Suppose that the graph defined by an AS’s
iBGP relationships, G, is acyclic. Then, G does not have a
signaling partition if, and only if, the BGP routers that are
not route reflector clients form a full mesh.

Proof. Call the set of routers that are not reflector clients
the “top layer” of G. If the top layer is not a full mesh,
then there are two routers X and Y with no iBGP session
between them, such that no route learned using eBGP at X
will ever be disseminated to Y , since no router readvertises
an iBGP-learned route.

Conversely, if the top layer is a full mesh, observe that
if a route reflector has a route to the destination, then all its



clients have a route as well. Thus, if every router in the top
layer has a route, all routers in the AS will have a route.
If any router in the top layer learns a route through eBGP,
then all the top layer routers will hear of the route (because
the top layer is a full mesh). Alternatively, if no router at
the top layer hears an eBGP-learned route, but some other
router in the AS does, then that route propagates up a chain
of route reflectors (each client sends it to its reflector, and
the reflector sends it on all its iBGP sessions) to the top
layer, from there to all the other top layer routers, and from
there to the other routers in the AS. �

rcc checks this condition by constructing the iBGP sig-
naling graph G from the sessions table (Table 1). It as-
sumes that the IGP graph is connected, then determines
whether G is connected and acyclic and whether the routers
at the top layer of G form a full mesh.

5 Route Validity Faults

BGP should satisfy route validity. Its configuration af-
fects which routes each router accepts, selects, and re-
advertises. Table 2 summarizes the route validity faults that
rcc checks. In this section, we focus on rcc’s approach to
detecting potential policy-related problems.

The biggest challenge for checking policy-related prob-
lems is that rcc operates without a specification of the in-
tended policy. Requiring operators to provide a high-level
policy specification would require designing a specification
language and convincing operators to use it, and it provides
no guarantees that the results would be more accurate, since
errors may be introduced into the specification itself. In-
stead, rcc forms beliefs about a network operator’s intended
policy in two ways: (1) assuming that intended policies con-
form to best common practice and (2) analyzing the con-
figuration for common patterns and looking for deviations
from those patterns. rcc then finds cases where the configu-
ration appears to violate these beliefs. It is noteworthy that,
even in the absence of a policy specification, this technique
detects many meaningful configuration faults and generates
few false positives.

5.1 Violations of Best Common Practice

Typically, a route that an AS learns from one of its
“peers” should not be readvertised to another peer. Check-
ing this condition requires determining how a route propa-
gates through a network. Figure 6 illustrates how rcc per-
forms this check. Suppose that rcc is analyzing the config-
uration from AS X and needs to determine that no routes
learned from Worldcom are exported to Sprint. First, rcc de-
termines all routes that X exports to Sprint, typically a set of
routes that satisfy certain constraints on their attributes. For
example, router A may export to Sprint only routes that are
“tagged” with the label “1000”. (ASes often designate such

C

Sprint Worldcom

A

1. Determine the set of routes that routers
      would export to Sprint.

2. Determine how import policies set route
     attributes on incoming routes from Worldcom.

AS X

Figure 6. How rcc computes route propagation.

labels to signify how a route was learned.) rcc then checks
the import policies for all sessions to Worldcom, ensuring
that no import policy will set route attributes on any incom-
ing route that would place it in the set of routes that would
be exported to Sprint.

Additionally, an AS should advertise routes with equally
good attributes to each peer at every peering point. An
AS should not advertise routes with inconsistent attributes,
since doing so may prevent its peer from implementing “hot
potato” routing,2 which typically violates peering agree-
ments. Recent work has observed that this type of inconsis-
tent route advertisement sometimes occurs in practice [13].

This violation can arise for two reasons. First, an AS
may apply different export policies at different routers to the
same peer. Checking for consistent export involves compar-
ing export policies on each router that has an eBGP session
with a particular peer. Static analysis is useful because it
can efficiently compare policies on many different routers.
In practice, this comparison is not straightforward because
differences in policy definitions are difficult to detect by
direct inspection of the distributed router configurations.
rcc makes comparing export policies easy by normalizing
all of the export policies for an AS, as described in Sec-
tion 3.1.

Second, an iBGP signaling partition can create incon-
sistent export policies because routes with equally good at-
tributes may not propagate to all peering routes. For exam-
ple, consider Figure 5 again. If routers W and Z both learn
routes to some destination d, then route W may learn a “bet-
ter” route to d, but routers Y and Z will continue to select
the less attractive route. If routers X and Y re-advertise their
routes to a peer, then the routes advertised by X and Y will
not be equally good. Thus, rcc also checks whether routers
that advertise routes to the same peer are in the same iBGP
signaling partition (as described in Section 4, rcc checks for
all iBGP signaling partitions, but ones that cause inconsis-
tent advertisement are particularly serious).

5.2 Configuration Anomalies

When the configurations for sessions at different routers
to a neighboring AS are the same except at one or two
routers, the deviations are likely to be mistakes. This test
relies on the belief that, if an AS exchanges routes with a
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Figure 8. BGP configuration in normalized format.

neighboring AS on many sessions and most of those ses-
sions have identical policies, then the sessions with slightly
different policies may be misconfigurations. Of course, this
test could result in many false positives because there are
legitimate reasons for having slightly different import poli-
cies on sessions to the same neighboring AS (e.g., out-
bound traffic engineering), but it does provide a useful san-
ity check.

6 Implementation

rcc is implemented in Perl and has been downloaded by
over 65 network operators. The parser is roughly 60% of the
code. Much of the parser’s logic is dedicated to policy nor-
malization. Figure 7 shows an overview of rcc, which takes
as input the set of configuration files collected from routers
in a single AS using a tool such as “rancid” [30]. rcc con-
verts the vendor-specific BGP configuration to a vendor-
independent normalized representation. It then checks this
normalized format for faults based on a set of correctness
constraints. rcc’s functionality is decomposed into three dis-
tinct modules: (1) a preprocessor, which converts configu-
ration into a more parsable version; (2) a parser, which gen-
erates the normalized representation; and (3) a constraint
checker, which checks the constraints.

6.1 Preprocessing and Parsing

The preprocessor adds scoping identifiers to configura-
tion languages that do not have explicit scoping (e.g., Cisco
IOS) and expands macros (e.g., Cisco’s “peer group”, “pol-
icy list”, and “template” options). After the preprocessor
performs some simple checks to determine whether the con-
figuration is a Cisco-like configuration or a Juniper config-
uration, it launches the appropriate parser. Many configura-
tions (e.g., Avici, Procket, Zebra, Quarry) resemble Cisco
configuration; the preprocessor translates these configura-
tions so that they more closely resemble Cisco syntax.

The parser generates the normalized representation from
the preprocessed configuration. The parser processes each
router’s configuration independently. It makes a single pass
over each router’s configuration, looking for keywords that
help determine where in the configuration it is operating
(e.g., “route-map” in a Cisco configuration indicates
that the parser is entering a policy declaration). The parser
builds a table of normalized policies by dereferencing all
filters and other references in the policy; if the reference
is defined after it is referenced in the same file, the parser
performs lazy evaluation. When it reaches the end of a file,
the parser flags any policies references in the configuration
that it was unable to resolve. The parser proceeds file-by-file
(taking care to consider that definitions are scoped by each
file), keeping track of normalized policies and whether they
have already appeared in other configurations.

Figure 8 shows rcc’s normalized representation for a
fragment of Cisco IOS. In rcc, this normalized representa-
tion is implemented as a set of mySQL database tables cor-
responding to the schema shown in Table 1. This Cisco con-
figuration specifies a BGP session to a neighboring router
with IP address 10.1.2.3 in AS 3. This statement is rep-
resented by a row in the sessions table. The second line
of configuration specifies that the import policy (i.e., “route
map”) for this session is defined as “IMPORT CUST” else-
where in the file; the normalized representation represents
the import policy specification as a pointer into a separate
table that contains the import policies themselves. A sin-
gle policy, such as IMPORT CUST is represented as mul-
tiple rows in the policies table. Each row represents a sin-
gle clause of the policy. In this example, IMPORT CUST
has two clauses: the first rejects all routes whose AS path
matches the regular expression number “99” (specified as
“ˆ65000” elsewhere in the configuration), and the sec-
ond clause accepts all routes that match AS path number
“88” and community number “10” and sets the “local pref-
erence” attribute on the route to a value of 80. Each of these
clauses is represented as a row in the policies table; specifi-
cations for regular expressions for AS paths and communi-
ties are also stored in separate tables, as shown in Figure 8.

rcc’s normalized representation does not store the names
of the policies themselves (e.g., “IMPORT CUST”, AS reg-



ular expression number “88”, etc.). Rather, the normalized
format only stores a description of what the route policy
does (e.g., “set the local preference value to 80 if the AS
path matches regular expression ˆ3”). Two policies may be
written using entirely different names, regular expression
numbers, or even in different languages, but if the policies
perform the same operations, rcc will recognize that they
are in fact the same policy.

6.2 Constraint Checking

We implemented each correctness condition in Table 2
by executing SQL queries against the normalized format
and analyzing the results of these queries in Perl.

rcc checks many constraints by executing simple queries
against the normalized representation. Checking constraints
against the normalized representation is simpler than ana-
lyzing distributed router configurations. Consider the test
in Table 2 called “iBGP configured on one end”; this con-
straint requires that, if a router’s configuration specifies an
iBGP session to some IP address, then (1) that IP address
should be the loopback address of some other router in the
AS, and (2) that other router should be configured with an
iBGP session back to the first router’s loopback address.
rcc tests this constraint as a single, simple “select” state-
ment that “joins” the loopbacks and sessions tables. Other
tests, such as checking properties of the iBGP signaling
graph, require reconstructing the iBGP signaling graph us-
ing the sessions table.

As another example, to check that no routing policy in
the AS prepends any AS number other than its own, rcc exe-
cutes a “select” query on a join of the sessions and policies
tables, which returns the ASes that each policy prepends (if
any) and the routers where each policy is used. rcc then
checks the global table to ensure that that for each router,
the AS number configured on the router matches the ASes
that any policy on that router prepends.

7 Evaluating Operational Networks with rcc

Our goal is to help operators move away from today’s
mode of stimulus-response reasoning by allowing them to
check the correctness of their configurations before deploy-
ing them on a live network. rcc has helped network opera-
tors find faults in deployed configurations; we present these
findings in this section. Because we used rcc to test con-
figurations that were already deployed in live networks, we
did not expect rcc to find many of the types of transient
misconfigurations that Mahajan et al. found [24] (i.e., those
that quickly become apparent to operators when the config-
uration is deployed). If rcc were applied to BGP configu-
rations before deployment, we expect that it could prevent
more than 75% of the “origin misconfiguration” incidents
and more than 90% of the “export misconfiguration” inci-
dents described in that study.3

7.1 Analyzing Real-World Configurations

We used rcc to evaluate the configurations from 17 real-
world networks, including BGP configurations from every
router in 12 ASes. We made rcc available to operators, hop-
ing that they would run it on their configurations and report
their results.

Network operators are reluctant to share router config-
uration because it often encodes proprietary information.
Also, many ISPs do not like researchers reporting on mis-
takes in their networks. (Previous efforts have enjoyed only
limited success in gaining access to real-world configura-
tions [34].) We learned that providing operators with a use-
ful tool or service increases the likelihood of cooperation.
When presented with rcc, many operators opted to provide
us with configurations, while others ran rcc on their config-
urations and sent us the output.

rcc detected over 1,000 configuration faults. The size of
these networks ranged from two routers to more than 500
routers. Many operators insisted that the details of their
configurations be kept private, so we cannot report separate
statistics for each network that we tested. Every network we
tested had BGP configuration faults. Operators were usually
unaware of the faults in their networks.

7.2 Fault Classification and Summary

Table 3 summarizes the faults that rcc detected. rcc dis-
covered potentially serious configuration faults as well as
benign ones. The fact that rcc discovers benign faults under-
scores the difficulty in specifying correct behavior. Faults
have various dimensions and levels of seriousness. For ex-
ample, one iBGP partition indicates that rcc found one case
where a network was partitioned, but one instance of un-
intentional transit means that rcc found two sessions that,
together, caused the AS to carry traffic in violation of high-
level policy. The absolute number of faults is less important
than noting that many of the faults occurred at least once.

Figure 9 shows that many faults appeared in many dif-
ferent ASes. We did not observe any significant correla-
tion between network complexity and prevalence of faults,
but configurations from more ASes are needed to draw any
strong conclusions. The rest of this section describes the ex-
tent of the configuration faults that we found with rcc.

7.3 Path Visibility Faults

The path visibility faults that rcc detected involve iBGP
signaling and fall into three categories: problems with “full
mesh” and route reflector configuration, problems config-
uring route reflector clusters, and incomplete iBGP session
configuration. Detecting these faults required access to the
BGP configuration for every router in the AS.

iBGP signaling partitions. iBGP signaling partitions
appeared in one of two ways: (1) the top layer of iBGP
routers was not a full mesh; or (2) a route reflector cluster



Problem Latent Benign
Path Visibility

Dissemination Problems
Signaling partition:

- of route reflectors 4 1
- within a RR “cluster” 2 0
- in a “full mesh” 2 0

Routers with duplicate:
- loopback address 13 120

iBGP configured on one end 420 0
or not to loopback

Route Validity
Filtering Problems
transit between peers 3 3
inconsistent export to peer 231 2
inconsistent import 105 12
eBGP session:

- w/no filters 21 —
- w/undef. filter 27 —
- w/undef. policy 2 —

filter:
- w/missing prefix 196 —

policy:
- w/undef. AS path 31 —
- w/undef. community 12 —
- w/undef. filter 18 —

Dissemination Problems
prepending with bogus AS 0 1
originating unroutable dest. 22 2
incorrect next-hop 0 2

Miscellaneous
Decision Process Problems
nondeterministic MED 43 0
age-based tiebreaking 259 0

Table 3. BGP configuration faults in 17 ASes.

had two or more route reflectors, but at least one client in
the cluster did not have an iBGP session with every route re-
flector in the cluster. Together, these accounted for 9 iBGP
signaling partitions in 5 distinct ASes, one of which was
benign. While most partitions involved route reflection, we
were surprised to find that even small networks had iBGP
signaling partitions. In one network of only three routers,
the operator had failed to configure a full mesh; he told
us that he had “inadvertently removed an iBGP session”.
rcc also found two cases where routers in a cluster with
multiple route reflectors did not have iBGP sessions to all
route reflectors in that cluster.

rcc discovered one benign iBGP signaling partition. The
network had a group of routers that did not exchange routes
with the rest of the iBGP-speaking routers, but the routers
that were partitioned introduced all of the routes that they
learned from neighboring ASes into the IGP, rather than
readvertising them via iBGP. The operator of this network
told us that these routers were for voice-over-IP traffic; pre-
sumably, these routers injected all routes for this application
into the IGP to achieve fast convergence after a failure or
routing change. In cases such as these, BGP configuration
cannot be checked in isolation from other routing protocols.
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Figure 9. Number of ASes in which each type of fault
occurred at least once.

Route reflector cluster problems. In an iBGP config-
uration with route reflection, multiple route reflectors may
serve the same set of clients. This group of route reflectors
and its clients is called a “cluster”; each cluster should have
a unique ID, and all routers in the cluster should be assigned
the same cluster ID. If a router’s BGP configuration does
not specify a cluster ID, then typically a router’s loopback
address is used as the cluster ID. If two routers have the
same loopback address, then one router may discard a route
learned from the other, thinking that the route is one that it
had announced itself. rcc found 13 instances of routers in
distinct clusters with duplicate loopback addresses and no
assigned cluster ID.

Different physical routers in the same AS may legit-
imately have identical loopback addresses. For example,
routers in distinct IP-layer virtual private networks may
route the same IPv4 address space.

Incomplete iBGP sessions. rcc discovered 420 incom-
plete iBGP sessions (i.e., a configuration statement on one
router indicated the presence of an iBGP session to another
router, but the other router did not have an iBGP session in
the reverse direction). Many of these faults are likely be-
nign. The most likely explanation for the large number of
these is that network operators may disable sessions by re-
moving the configuration from one end of the session with-
out ever “cleaning up” the other end of the session.

7.4 Route Validity Faults

In this section, we discuss route validity faults. We first
discuss filtering-related faults; we classify faults as latent
unless a network operator explicitly told us that the fault
was benign. We also describe faults concerning undefined
references to policies and filters. Some of these faults, while
simple to check, could have serious consequences (e.g.,
leaked routes), if rcc had not caught them and they had been



activated. Finally, we present some interesting faults related
to route dissemination, all of which were benign.

7.4.1 Filtering Problems

Decomposing policies across configurations on different
routers can cause faults, even for simple policies such as
controlling route export between peers. rcc discovered the
following problems:

Transit between peers. rcc discovered three instances
where routes learned from one peer or provider could be
readvertised to another; typically, these faults occurred be-
cause an export policy for a session was intended to filter
routes that had a certain community value, but the export
policy instead referenced an undefined community.

Obsolete contractual arrangements can remain in config-
uration long after those arrangements expire. rcc discovered
one AS that appeared to readvertise certain prefixes from
one peer to another. Upon further investigation, we learned
that the AS was actually a previous owner of one of the
peers. When we notified the operator that his AS was pro-
viding transit between these two peers, he told us, “Histor-
ically, we had a relationship between them. I don’t know
what the status of that relationship is these days. Perhaps it
is still active—at least in the configs!”

Inconsistent export to peer. We found 231 cases where
an AS advertised routes that were not “equally good” at ev-
ery peering point. It is hard to say whether these inconsis-
tencies are benign without knowing the operator’s intent,
but roughly twenty of these inconsistencies were certainly
accidental. For example, one inconsistency existed because
of an undefined AS path regular expression referenced in
the export policy; these types of inconsistencies have also
been observed in previous measurement studies [13].

Inconsistent import policies. A recent measurement
study observed that ASes often implement policies that re-
sult in late exit (or “cold potato”) routing, where a router
does not select the BGP route that provides the closest exit
point from its own network [33].4 rcc found 117 instances
where an AS’s import policies explicitly implemented cold
potato routing, which supports this previous observation. In
one network, rcc detected a different import policy for ev-
ery session to each neighboring AS. In this case, the import
policy was labeling routes according to the router at which
the route was learned.

Inconsistent import and export policies were not always
immediately apparent to us even after rcc detected them: the
two sessions applied policies with the same name, and both
policies were defined with verbatim configuration frag-
ments. The difference resulted from the fact that the dif-
ference in policies was three levels of indirection deep. For
example, one inconsistency occurred because of a differ-
ence in the definition for an AS path regular expression that

the export policy referenced (which, in turn, was referenced
by the session parameters).

rcc also detected filtering problems on single-router con-
figurations:

Undefined references in policy definitions. Several
large networks had router configurations that referenced un-
defined variables and BGP sessions that referenced unde-
fined filters. These faults can sometimes result in uninten-
tional transit or inconsistent export to peers or even poten-
tial invalid route advertisements. In one network, rcc found
four routers with undefined filters that would have allowed
a large ISP to accept and readvertise any route to the rest of
the Internet (such a failure actually occurred in 1997 [32]);
this potentially active fault could have been catastrophic if a
customer had (unintentionally or intentionally) announced
invalid routes, since ASes typically do not filter routes com-
ing from large ISPs. This misconfiguration occurred even
though the router configurations were being written with
scripts; an operator had apparently made a mistake speci-
fying inputs to the scripts. Operators can detect such faults
using rcc.

Non-existent or inadequate filtering. Filtering can go
wrong in several ways: (1) no filters are used whatsoever,
(2) a filter is specified but not defined, or (3) filters are de-
fined but are missing prefixes or otherwise out-of-date (i.e.,
they are not current with respect to the list of private and
unallocated IP address space [7]).

Every network that rcc analyzed had faults in filter con-
figuration. Some of these faults would have caused an AS to
readvertise any route learned from a neighboring AS. In one
case, policy misconfiguration caused an AS to transit traffic
between two of its peers. Table 3 and Figure 9 show that
these faults were extremely common: rcc found 21 eBGP
sessions in 5 distinct ASes with no filters whatsoever and
27 eBGP sessions in 2 ASes that referenced undefined fil-
ters. Every AS had partially incorrect filter configuration,
and most of the smaller ASes we analyzed either had mini-
mal or no filtering. Only a handful of the ASes we analyzed
appeared to maintain rigorous, up-to-date filters for private
and unallocated IP address space. These findings agree with
those of our recent measurement study, which also suggests
that many ASes do not perform adequate filtering [12].

The reason for inadequate filtering seems to be the lack
of a process for installing and updating filters. One opera-
tor told us that he would be willing to apply more rigorous
filters if he knew a good way of doing so. Another opera-
tor runs sanity checks on filters and was surprised to find
that many sessions were referring to undefined filters. Even
a well-defined process can go horribly wrong: one operator
intended to use a feed of unallocated prefixes to automati-
cally install filters, but instead ended up readvertising them.
Because there is a set of prefixes that every AS should al-
ways filter, some prefixes should be filtered by default.



7.4.2 Dissemination Problems

We describe configuration faults involving dissemination.
rcc found only benign faults in this case.

Unorthodox AS path prepending practices. An AS
will often prepend its own AS number to the AS path on
certain outbound advertisements to affect inbound traffic.
However, we found one AS that prepended a neighbor’s AS
on inbound advertisements in an apparent attempt to influ-
ence outbound traffic.5

iBGP sessions with “next-hop self”. We found two
cases of iBGP sessions that violated common rules for set-
ting the next-hop attribute, both of which were benign. First,
rcc detected route reflectors that appeared to be setting the
“next hop” attribute. Although this practice is not likely to
create active faults, it seemed unusual, since the AS’s exit
routers typically set the next hop attribute, and route reflec-
tors typically do not modify route attributes. Upon further
investigation, we learned that some router vendors do not
allow a route reflector to reset the next-hop attribute. Even
though the configuration specified that the session would
reset the next-hop attribute, the configuration statement had
no effect because the software was designed to ignore it.
The operator who wrote the configuration specified that the
next-hop attribute be reset on these sessions to make the
configuration appear more uniform. Second, routers some-
times reset the next-hop on iBGP sessions to themselves on
sessions to a route monitoring server to allow the operator
to distinguish which router sent each route to the monitor.

7.5 Miscellaneous Tests

Non-deterministic route selection. rcc discovered more
than two hundred routers that were configured such that the
arrival order of routes affected the outcome of the route se-
lection process (i.e., these routers had either one or both
of the two configuration settings that cause nondetermin-
ism). Although there are occasionally reasonably good rea-
sons for introducing ordering dependencies (e.g., preferring
the “most stable” route; that is, the one that was advertised
first), operators did not offer good reasons for why these
options were disabled. In response to our pointing out this
fault, one operator told us,“That’s a good point, but my net-
work isn’t big enough that I’ve had to worry about that yet.”
Non-deterministic features should be disabled by default.

7.6 Higher-level Lessons

Our evaluation of real-world BGP configuration from
operational networks suggests five higher-level lessons
about the nature of today’s configuration process. First,
operational networks—even large, well-known, and well-
managed ones—have faults. Even the most competent of
operators find it difficult to manage BGP configuration.
Moreover, iBGP is misconfigured often; in fact, in the ab-
sence of a guideline such as Theorem 4.1, it is hard for a

network operator to know what properties the iBGP signal-
ing graph should have. Second, the majority of the configu-
ration faults that rcc detected resulted from the fact that an
AS’s configuration is distributed across its routers. A rout-
ing architecture or configuration management system that
enabled an operator to configure the network from a cen-
tralized location with a high-level language would likely
prevent many serious faults. Third, although operators use
tools that automate some aspects of configuration, these
tools are not a panacea. In fact, we found cases where
the incorrect use of these tools caused configuration faults.
Fourth, maintaining network-wide policy consistency ap-
pears to be hard; invariably, in most ASes there are routers
whose configuration appears to contradict the AS’s desired
policy. Finally, we found that route filters are poorly main-
tained. Routes that should never be seen on the global In-
ternet (e.g., routes for private addresses) are rarely filtered,
and the filters that are used are often misconfigured and out-
dated.

8 Related Work

We discuss related work in three areas: router configura-
tion, model checking, and BGP convergence.

Router configuration. Mahajan et al. studied short-
lived BGP misconfiguration by analyzing transient, glob-
ally visible BGP announcements from an edge net-
work [24]. They defined a “misconfiguration” as a transient
BGP announcement that was followed by a withdrawal
within a small amount of time (suggesting that the opera-
tor observed and fixed the problem). They found that many
misconfigurations are caused by faulty route origination and
incorrect filtering. rcc can help operators find these faults; it
can also detect faults that are difficult to quickly locate and
correct. rcc also helps operators detect the types of miscon-
figurations found by Mahajan et al. [24] before deployment.

Some commercial tools analyze network configuration
and highlight rudimentary errors [29]. Previous work has
proposed tools that analyze intradomain routing configura-
tion [15] and automate enterprise network configuration [6].
These tools detect router and session-level syntax errors
only (e.g., undefined filters), a subset of the faults that
rcc detects. rcc is the first tool to check network-wide prop-
erties using a vendor-independent configuration representa-
tion and the first tool that applies a high-level specification
of routing protocol correctness.

Many network operators use configuration management
tools such as “rancid” [30], which periodically archive
router configuration and provide version tracking. When a
network problem coincides with the configuration change
that caused it, these tools can help operators revert to an
older configuration. Unfortunately, a configuration change
may induce a latent or potentially active fault, and these



tools do not detect whether the configuration has these types
of faults in the first place.

Model checking. Model checking has been successful
in verifying the correctness of programs [18] and other net-
work protocols [4, 22, 26]. Unfortunately, model checking
is not appropriate for verifying BGP configuration because
it depends heavily on exhausting the state-space within an
appropriately-defined environment [25]. The behavior of an
AS’s BGP configuration depends on routes that arrive from
other ASes, some of which, such as backup paths, cannot
be known in advance [9].

Analysis of BGP safety and stability. Previous work
has noted that BGP may not converge to a stable path as-
signment and stated sufficient conditions to guarantee that
BGP will arrive at such an assignment [19, 21, 35]. This
property is called safety. Gao and Rexford state sufficient
conditions for safety in eBGP and observe that typical pol-
icy configurations satisfy these conditions [16]. (Griffin et
al. note that analogous sufficient conditions apply to iBGP
with route reflection [20].) In both cases, the sufficient con-
ditions also require global knowledge of either rankings or
the AS-level topology. rcc tests constraints that must hold
on the configuration of a single AS. Our recent work derives
necessary conditions that the configuration of each AS must
satisfy to guarantee safety [11].

9 Discussion and Conclusion

In recent years, much work has been done to understand
BGP’s behavior, and much has been written about the wide
range of problems it has. Some argue that BGP has out-
lived its purpose and should be replaced; others argue that
faults arise because today’s configuration languages are not
well-designed. We believe that our evaluation of faults in to-
day’s BGP configuration provides a better understanding of
the types of errors that appear in today’s BGP configuration
and the problems in today’s configuration languages. Our
findings should help inform the design of wide-area routing
systems in the future.

Despite the fact that BGP is almost 10 years old, opera-
tors continually make the same mistakes as they did during
BGP’s infancy, and, regrettably, our understanding of what
it means for BGP to behave “correctly” is still rudimentary.
This paper takes a step towards improving this state of af-
fairs by making the following contributions:

• We define a high-level correctness specification for
BGP and map that specification to conditions that can
be tested with static analysis.

• We use this specification to design and implement rcc,
a static analysis tool that detects faults by analyzing
the BGP configuration across a single AS. With rcc,
network operators can find many faults before deploy-

ing configurations in an operational network. rcc has
been downloaded by over 65 network operators.

• We use rcc to explore the extent of real-world BGP
misconfigurations. We have analyzed real-world, de-
ployed configurations from 17 different ASes and de-
tected more than 1,000 BGP configuration faults that
had previously gone undetected by operators.

In light of our findings, we suggest two ways to make in-
terdomain routing less prone to configuration faults. First,
protocol improvements, particularly in intra-AS route dis-
semination, could avert many BGP configuration faults. The
current approach to scaling iBGP should be replaced. Route
reflection serves a single, relatively simple purpose, but it is
the source of many faults, many of which cannot be checked
with static analysis of BGP configuration alone [20]. The
protocol that disseminates BGP routes within an AS should
enforce path visibility and route validity; the Routing Con-
trol Platform [5] offers one possible solution.

Second, BGP should be configured with a centralized,
higher-level specification language. Today’s BGP configu-
ration languages enable an operator to specify router-level
mechanisms that implement high-level policy, but the dis-
tributed, low-level nature of the configuration languages in-
troduces complexity, obscurity, and opportunities for mis-
configuration rather than design flexibility or expressive-
ness. For example, rcc detects many faults in implementa-
tion of some high-level policies in low-level configuration;
these faults arise because there are many ways to implement
the same high-level policy, and the low-level configuration
is unintuitive. Ideally, a network operator would never touch
low-level mechanisms (e.g., the community attribute) in the
common case. Rather than configuring routers with a low-
level language, an operator should configure the network
using a language that directly reflects high-level policies.
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Notes

1 If a router establishes an iBGP session with a router’s loopback ad-
dress, then the iBGP session will remain active as long as that router is
reachable via any IGP path between the two routers. If a router establishes
an iBGP session with an interface address of another router, however, the
iBGP session will go down if that interface fails, even if an IGP path exists
between those routers.

2If ASes 1 and 2 are peers, then the export policies of the routers in AS
1 should export routes to AS 2 that have equal AS path length and MED
values. If not, router X could be forced to send traffic to AS 1 via router Y
(“cold potato” routing)

3rcc detects the following classes of misconfiguration described by Ma-
hajan et al.: reliance on upstream filtering, old configuration, community,
forgotten filter, prefix-based config, bad ACL or route map, and typo.

4Inconsistent import policy technically concerns how configuration af-
fects ranking, and it is more often intentional than not. Nevertheless, this
test occasionally highlights anomalies that operators are interested in cor-
recting, and it serves as a useful sanity check when looking for other types
of anomalies (such as dynamically detecting inconsistent route advertise-
ments from a neighboring AS [13]).

5One network operator also mentioned that ASes sometimes prepend
the AS number of a network that they want to prevent from seeing a certain
route (i.e., by making that AS discard the route due to loop detection),
effectively “poisoning” the route. We did not witness this poisoning in any
of the configurations we analyzed.


