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ABSTRACT
Thousands of competing autonomous systems must cooperate with
each other to provide global Internet connectivity. Each au-
tonomous system (AS) encodes various economic, business, and
performance decisions in its routing policy. The current interdo-
main routing system enables each AS to express policy usingrank-
ings that determine how each router in the AS chooses among dif-
ferent routes to a destination, andfilters that determine which routes
are hidden from each neighboring AS. Because the Internet iscom-
posed of many independent, competing networks, the interdomain
routing system should provideautonomy, allowing network opera-
tors to set their rankings independently, and to have no constraints
on allowed filters. This paper studies routing protocol stability un-
der these conditions. We first demonstrate that certain rankings that
are commonly used in practice may not ensure routing stability.
We then prove that, when providers can set rankings and filters au-
tonomously, guaranteeing that the routing system will converge to
a stable path assignment essentially requires ASes to rank routes
based on AS-path lengths. We discuss the implications of these
results for the future of interdomain routing.

Categories and Subject Descriptors
C.2.6 [Computer Communication Networks]: Internetwork-
ing; C.2.2 [Computer Communication Networks]: Network
Protocols—Routing Protocols

General Terms
Design, Reliability, Performance, Theory

Keywords
Routing, Internet, policy, autonomy, safety, stability, BGP, protocol

1. Introduction
The Internet’s routing infrastructure is made up of thousands of

independently operated networks that cooperate to exchange global
reachability information using an interdomain routing protocol, the
Border Gateway Protocol, Version 4 (BGP) [16]. This coopera-
tion occurs in a landscape where these independent networks, or
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autonomous systems, compete to provide Internet service. BGP
facilitates this “competitive cooperation” by enabling network op-
erators to express routing policies that are consistent with desired
economic, business, and performance goals.

Rankingandfiltering are the two main mechanisms that operators
use to implement their policies. Ranking determines which of many
possible routes to a destination should be used, thus providing an
autonomous system (AS) the freedom to specify preferences over
multiple candidate paths to a destination (e.g., specifying a primary
and a backup path). Filtering allows an AS to selectively advertise
routes to some autonomous systems and hide routes from others,
thereby controlling which neighboring autonomous systemssend
traffic over its infrastructure.

There are two important characteristics of policy routing:auton-
omyandexpressiveness. Autonomy is the ability of each AS to set
its rankings and filters independent of the others. Expressiveness
refers to the flexibility of the routing protocol in allowingoperators
to specify rankings and filters. Ranking expressiveness determines
what classes of rankings over routes are permitted by the protocol,
while filtering expressiveness determines the range of route filters
that are allowed.

The combination of expressiveness and autonomy has, in large
part, been the reason for the success of BGP over the past decade.
We contend that both autonomy and filtering expressiveness will be
requirementsfor policy routing for the foreseeable future. Previous
studies of routing stability assume that ASes are willing tocom-
promise some degree of autonomy, filtering expressiveness,or both
(see Section 2). However, autonomy preserves each AS’s ability to
set its policies without coordinating with any other AS. Filtering ex-
pressiveness gives an AS flexibility in how it establishes contracts
with another AS, a task that should be unconstrained.

Ideally, an interdomain routing system should preserve auton-
omy, filtering expressiveness, and ranking expressiveness. How-
ever, the ability to specify highly expressive rankings comes at
considerable cost to system robustness: as has been observed by
Varadhanet al. and Griffinet al., among others, if there are no con-
straints on the rankings that an AS can specify, BGP may oscillate
forever [12, 18].

Example 1Consider Figure 1 [12, 18]. ASes1, 2, and3 each pre-
fer the indirect path through their neighboring AS in the clockwise
direction over the direct path to the destination,0. All other paths
are filtered. This configuration has no stable path assignment (i.e.,
a path assignment from which no node would deviate). For exam-
ple, consider the path assignment(10, 210, 30); in this case, AS1
has a better path available,130, so it switches paths. This switch
breaks the path210, causing AS2 to switch to its second choice,
path20. The resulting path assignment,(130, 20, 30), is a permu-
tation of the original path assignment: this time, AS3 has the path
320 available, so it switches. This oscillation continues forever. �
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Figure 1: Instability can arise when each AS independently specifies
rankings [12, 18]. Each circle represents an AS. AS0 is the destination.
The listing of paths beside each node denotes a ranking over paths.

As the previous example suggests, full autonomy and expressive-
ness can have undesirable consequences. Routing protocol update
messages should reflect actual reachability changes in the network
topology or policy. Unfortunately, in BGP, conflicting policies can
cause oscillations that produce endless streams of routingupdates
that are unrelated to changes in topology or policy. This instability
creates numerous performance problems, may cause network par-
titions, and complicates diagnosis and debugging of problems in
the routing system. Furthermore, a network operator has no way to
guarantee that any given configuration of rankings and filters will
not adversely interact with the policies of other ASes. In light of
these issues, developing rigorous conditions on policy expressive-
ness that guarantee routing stability, while preserving autonomy, is
crucial.

This paper explores the following question: provided that each
AS retains complete autonomy and complete filtering expressive-
ness, how expressive can rankings be while guaranteeing stable
routing? This question is important because ranking autonomy
and filtering expressiveness reflect the realities of how ASes spec-
ify policies today, and little is known (beyond the results surveyed
in Section 2) about the tradeoffs between autonomy and expres-
siveness as far as routing stability is concerned, particularly under
filtering. In particular, our work is the first to develop necessary
conditions for stability under realistic assumptions about autonomy
and expressiveness and the first to derive necessary conditions for
stability in policy routing.

This paper makes three main contributions. First, in Section 4.1,
we show that rankings based solely on the immediate next-hopAS
en route to the destination may never reach a stable path assign-
ment from an arbitrary initial state;i.e., next-hop rankings, which
are common in practice, arenot safe. Moreover, under unrestricted
filtering, a routing system with next-hop rankings may have no sta-
ble path assignment. In addition to their operational implications,
these results are also somewhat surprising, because next-hop rank-
ings with no route filtering always have one stable path assignment.
We also observe that although rankings based on a globally consis-
tent weighting of paths are safe under filtering, even minor general-
izations of the weighting function compromise safety (Section 4.2).

Second, we define adispute ring, a special case of the “dispute
wheel” (a group of nodes whose rankings have a particular form)
of Griffin et al. [12], and show that any routing protocol that has
a dispute ring is not safe under filtering (Section 5). Using the dis-
pute wheel concept, Griffinet al. showed a sufficient condition for
safety, proving that if a routing system is unsafe then it must have a
dispute wheel. In contrast, to our knowledge, our result is the first
known necessary condition for safety under filtering.

Third, we show that, providing for complete autonomy and fil-
tering expressiveness, the set of allowable rankings that guarantee
safety is effectively ranking based on (weighted) shortestpaths. In
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Figure 2: Constraints on filtering and topology are not enforceable.

Section 6, we prove that any routing system that permits paths of
lengthn + 2 to be ranked over paths of lengthn can have a dis-
pute ring, and is thus unsafe under filtering. We also prove that
any routing system that permits paths of lengthn + 1 to be ranked
over paths of lengthn can have a dispute wheel. In summary, our
results indicate that stable policy routing with provider autonomy
and expressive filtering requires tight constraints on rankings.

Our findings may be interpreted in several ways. The optimist
will note that checking a set of rankings to ensure safety is triv-
ial, because all it requires is that BGP routers modify the decision
process to consult a route’s “local preference” attribute only af-
ter considering its AS path length. The pessimist, however,may
conclude that guaranteeing safe routing while preserving autonomy
may yield constraints on expressiveness that are too constraining.
In either case, the results proved in this paper about the fundamental
tradeoff between the expressiveness and autonomy may help guide
the design of stable interdomain routing protocols in the future.

2. Background and Related Work
A seminal paper by Varadhanet al. observed that policy-based

interdomain routing protocols could oscillate and defined the con-
cept of safety [18]. Varadhanet al. also conjectured that routing
systems that allow rankings other than those based on next-hop
rankings or shortest path routing may be unsafe [18].

Griffin et al. asked how expressive an autonomous, robust rout-
ing system can be [11]; our paper addresses this question. Varadhan
et al. showed that a routing system with an acyclic topology will
have at least one stable path assignment if participants canonly ex-
press next-hop preferences [18]. In this paper, we use a construction
due to Feigenbaumet al. [6] to show that systems with next-hop
rankings always have at least one stable routing. However, we also
show that when BGP’s protocol dynamics are taken into account,
restricting each AS to only next-hop rankings doesnot guarantee
that the routing system will be safe.

Gao and Rexford derived sufficient constraints on rankings,fil-
tering, and network topology to guarantee routing stability; they
also observe that these constraints reflect today’s common prac-
tice [7, 8]. They showed that if every AS considers each of its
neighbors as either a customer, a provider, or a peer, and obeys cer-
tain local constraints on rankings and filtering, and if the routing
system satisfies certain topology constraints, then BGP is stable.
However, their model does not incorporate ranking independence,
as their proposed topological constraints are global. Furthermore,
their model restricts filtering; the example below illustrates why
these restrictions may sometimes be too strict.

Example 2 Figure 2 shows a situation that occurred in 2001 [2].
When PSINet terminated its peering with AboveNet, AboveNetlost
connectivity to PSINet’s customers,d1. To restore connectivity,
AboveNet bought “transit” service from Verio (already a peer of
PSINet), but only for routes to PSINet and its customers.

Verio does not filterd1 (or any of PSINet’s prefixes) from
AboveNet, which is only possible if Verio treats AboveNet asa
customer. The constraints imposed by Gao and Rexford state that



an ASmustprefer customer routes over peering routes.1 This con-
straint requires Verio to rank AboveNet’s route tod2 over any other
available routes tod2 in order to guarantee stability, which restricts
Verio’s flexibility in how it can select routes. Establishing a new
business relationship (and, hence, altering its filtering policies) re-
quiresVerio to change its rankings as well. �

Researchers have previously studiedglobalconditions to guaran-
tee the safety of routing systems; global conditions presume that the
routing system does not preserve autonomy. Griffinet al. showed
that, if the rankings of the ASes in a routing systems do not form a
dispute wheel(a concept that describes global relationship between
the rankings of a set of ASes), then the routing system is safe[12].
Griffin et al. also examinedrobustness, the property that safety is
guaranteed even if arbitrary nodes or edges are removed fromthe
graph. We view robustness as a special case of filtering: removing
an edge can be achieved if the ASes incident to that edge filterall
routes through that edge; removing a node entails having allASes
filter all routes through that node.

Griffin et al. also showed how to modify a BGP-like path vector
protocol to detect the existence of a dispute wheel but left unspeci-
fied how the ASes should resolve the dispute wheel [13]. Machiraju
and Katz defined a global invariant for determining safety when
at most one AS deviates from the conditions of Gao and Rex-
ford [15]. Govindanet al. proposed a routing architecture where
ASes coordinate their policies [9, 10] using a standardizedpolicy
specification language [1]. Jaggard and Ramachandran presented
global conditions to guarantee safety of routing systems that al-
low ASes to express only next-hop preferences over routes, and de-
signed centralized and distributed algorithms to check these global
conditions [14]. Sobrinho defined concepts that describe global re-
lationships between preferences and incorporated severalprevious
results (including those of both Griffinet al. [12] and Gao and Rex-
ford [8]) into a single algebraic framework [17]. In contrast to pre-
vious work, this paper recognizes autonomy and ranking expres-
siveness as requirements and studies the conditions under which a
policy-based interdomain routing protocol can be stable.

3. Routing Model and Definitions
We now define our routing model. After introducing some basic

terminology, we formally define two notions of good behaviorfor
routing protocols:stability andsafety. Finally, we extend each of
these two definitions to handle filtering expressiveness.

3.1 Preliminaries
We consider a model consisting ofN ASes (nodes)2, labeled

1, . . . , N . Each of these nodes wishes to establish a path (defined
below) to a single destination, labeled0.

Definition 1 (Path) A pathfrom i to j is a sequence of nodesP =
ii1i2 . . . imj with no repetition,;i.e., such thatiu 6= iv if u 6= v,
andiu 6= i, j for all u.

We denote the number of hops in a pathP aslength(P ); note
that a path withn nodes hasn − 1 hops. In addition, given an AS
1Gao and Rexford present a weaker constraint that allows an ASto rank
routes learned from customers and peers over those from providers, but does
not require customer routes to be strictly preferred over routes from peers.
This relaxed condition requires that there are no instanceswhere an AS’s
customer is also a peer of another one of the AS’s peers. Of course, Exam-
ple 2 could also violate this constraint on the topology: PSINet is Verio’s
customer ford1, but it would be reasonable for PSINet to peer with another
of Verio’s peers, since all are “tier-1” ISPs.
2In this paper, we use the terms “AS” and “node” interchangeably.

k, we will write k ∈ P if nodek appears inP . For clarity, given
a pathP from i to j, we will often denoteP by iP j; furthermore,
if P is a path fromi to j, andQ is a path fromj to k, then we will
denote the concatenation ofP andQ by iP jQk.

We denote the set ofall paths fromi to 0 (i.e., all paths on the
complete graph) using the nodes1, . . . , N byPN

i . Given the set of
nodes{1, . . . , N}, each ASi will choose aranking≺i over the set
of all pathsPN

i , defined as follows.

Definition 2 (Ranking) A ranking≺i for nodei is a total ordering
over the set of all pathsPN

i ; thus, given any two pathsP, Q ∈ PN
i ,

eitherP ≺i Q (i prefersQ to P ) or P �i Q (i prefersP to Q).

An AS may always choose theempty path, ε, which is equivalent
to total disconnection from the destination node0. Thus, we have
ε ∈ PN

i for all i andN . Furthermore, we assume that every AS
strictly prefers connectivity to disconnectivity, so thatP �i ε for
all P ∈ PN

i .
Note that all paths may not be available to nodei, due to both

topological constraints and filtering by other nodes. We will use
Fi ⊆ PN

i to denote the set of paths actually available for use by
nodei. The empty path is always available;i.e., ε ∈ Fi.

A routing systemis specified by the rankings of the individual
nodes, together with the paths available to the individual nodes.
Observe that we have decoupled the “routing policy” of each AS
i into two components: the rankings≺i of AS i over route adver-
tisements received; and a determination of which paths are filtered
from other ASes. The filtering decisions of all nodes, together with
physical constraints on the network, yield the setsF1, . . . ,FN . We
thus have the following formal definition of a routing system.

Definition 3 (Routing system) A routing systemis a tuple (N,
≺1, . . . ,≺N ,F1, . . . ,FN ), where nodei has ranking≺i over the
setPN

i , andFi is the set of paths available to nodei.

A routing system specifies the input to any interdomain routing
protocol we might consider. Given this input, the protocol should
converge to a “routing tree”: that is, an assignment of a pathto each
AS, such that the routes taken together form a spanning tree rooted
at0. To formalize this notion, we must define path assignments and
consistent paths.

Definition 4 (Path assignment)A path assignmentfor the routing
system(N,≺1, . . . ,≺N ,F1, . . . ,FN ) is a vector of pathsP =
(P1, . . . , PN) such that, for alli, Pi ∈ Fi.

Thus, a path assignment is an assignment of a feasible path to
each nodei, where feasibility is determined by the set of pathsFi.
Even though each node has a path assigned, these paths may notbe
consistent: nodei may be assigned a pathPi = ijP̂j0, wherej is
the first node traversed onPi, and whereP̂j is a path fromj to 0.
However, the patĥPj may not be the same as the pathPj assigned
to j in the path assignmentP ; in fact,P̂j may not even be in the set
of feasible pathsFj . For example, a node or link along the pathP̂j

may experience a failure, causing the routing protocol to withdraw
the path; ifj has heard such a withdrawal buti has not, then it
is possible thatPi = ijP̂j0 until nodei learns thatP̂j no longer
exists. To formally capture such situations, we define consistent
paths and consistent path assignments.

Definition 5 (Consistent path) Given a path assignmentP , a
pathP̂i for nodei is consistentwith P if one of the following holds:



1. P̂i = ε; or

2. P̂i = i0; or

3. P̂i = ijPj0, for somej 6= i.

Definition 6 (Consistent path assignment)A consistent path as-
signmentfor the routing system(N,≺1, . . . ,≺N ,F1, . . . ,FN ) is
a path assignment vectorP = (P1, . . . , PN ) such that for alli, Pi

is consistent withP .

A routing protocol where packets are forwarded solely on desti-
nation should ultimately assign paths that are consistent with each
other.

3.2 Stability and Safety
Informally, a path assignment isstableif it is consistent, and no

node has a more preferred consistent path available.

Definition 7 (Stable path assignment)Given a routing system
(N,≺1, . . . ,≺N ,F1, . . . ,FN), and a consistent path assignment
P , we say thatP is stableif for all nodesi, and all pathsP̂i ∈ Fi

that are consistent withP , P̂i ≺i Pi.

Definition 8 (Stable routing system) The routing system(N,
≺1, . . . ,≺N ,F1, . . . ,FN) is stableif there exists at least one sta-
ble path assignmentP .

The stability of a routing system does not indicate whether arout-
ing protocol will convergeregardlessof the initial path assignment.
The safetyproperty, which states that a protocol eventually con-
verges, regardless of the initial path assignment and ordering of the
routing messages, captures this notion.

In defining safety, we will consider a simplified abstractionof
BGP. We model the process by which nodes receive route adver-
tisements from other nodes and subsequently update their own route
decisions. In this paper, we will consider a protocol dynamic where
at each time step only a single AS isactivated; when activated, an
AS immediately processes all pending incoming route advertise-
ments, and then makes a route decision. Formally, this modelwill
translate into a path assignment sequence where exactly onenode
(the “activated” node) changes its route at any given time step.

A routing system is safe if no oscillation occurs regardlessof the
order in which nodes are activated.

Definition 9 (Fair activation sequence)The sequencei1, i2, . . .
is a fair activation sequenceif each nodei = 1, . . . , N appears
infinitely often in the sequence.

This definition of fair activation sequence is similar to that pre-
sented by Gao and Rexford [8], except that in our definition we
only activate one node at a time. This distinction is not major: we
can interpret the Gao and Rexford dynamics as a model where out-
standing routing messages may be in flight when a particular node
is activated.

We now define our simplified model of the routing protocol dy-
namics: that is, starting from an initial path assignmentP 0, and
given a fair activation sequence of nodesi1, i2, . . ., what is the re-
sulting observed sequence of path assignmentsP 1, P 2, . . .? To
formalize the dynamics of our model, we consider an abstraction
of the BGP decision process described in Figure 3. At each time
t, a nodeit is activated, and chooses its most preferred available
path consistent with the path assignmentP t−1. All other nodes’

Routing protocol dynamics
At time t − 1, the current path assignment isP t−1; i.e., each node
i has currently selected pathPi,t−1 to the destination0. At time t:

1. A given nodeit is activated.

2. Nodeit updates its path to be themost preferred path(ac-
cording to≺it

) consistent withP t−1. That is,

(a) Pit,t ∈ Fit
is consistent withP t−1, and

(b) Pit,t �it
P̂it

∀ P̂it
∈ Fit

consistent withP t−1.

3. All other nodes leave their paths unchanged.

Figure 3: The routing protocol dynamics, given an activation sequence
i1, i2, . . .. The process starts from an initial path assignmentP0.

paths remain unchanged. It is clear that this decision process yields
a sequence of path assignmentsP 1, P 2, . . ..

After any given activation stept, the overall path assignmentP t

may not be consistent. Inconsistencies reflect the fact thata node
only updates its path assignment in response to the receipt of a route
advertisement. If, at timet0, a nodei is using a path that traverses
some other nodej that has since changed paths, then nodei would
obliviously continue to use (and advertise) thatinconsistentpath
until it receives a routing update that reflects that the paththrough
j has disappeared or changed. When activated, say, at timet > t0,
nodei would discover that the path it was using was inconsistent
with P t and would then select its highest-ranked path that was
consistent withP t. The activation of a node at some timet cor-
responds to that node receiving all available routing information in
the system up to that time.

With the definition of our protocol dynamics in hand, we can
define protocolsafety. Given a routing system and an activation se-
quence, we say that the system has converged if, after some finite
time, the path assignment remains invariant for all future time. A
protocol issafeif it converges to a stable path assignment, regard-
less of the initial path assignment and fair activation sequence.

Definition 10 (Safety) A routing system (N,≺1, . . . ,
≺N ,F1, . . . ,FN ) is safe if for any initial path assignment
P 0 and fair activation sequencei1, i2, . . ., there exists a finiteT
such thatP t = P T for all t ≥ T .

Because the activation sequences are fair in the preceding defi-
nition, if a routing system converges toP t, then the resulting path
assignment to which the system converges must be both consistent
and stable. If not, at least one node would change its path assign-
ment eventually.

3.3 Filtering
In this paper, we are interested in the stability and safety of sys-

tems that result when nodes are allowed to filter routes from other
nodes. We thus require conditions stronger than stability and safety,
known asstability under filteringandsafety under filtering. Infor-
mally, a routing system is stable (respectively, safe) under filtering
if, under any choices of filters made by the ASes, the resulting rout-
ing system is always stable (respectively, safe).

Definition 11 (Stable under filtering) The routing system(N,
≺1, . . . ,≺N ,F1, . . . ,FN ) is stable under filteringif, for all
choices of available pathŝFi ⊆ Fi for i = 1, . . . , N , the rout-
ing system(N,≺1, . . . ,≺N , F̂1, . . . , F̂N ) is stable.



Definition 12 (Safe under filtering) The routing system (N,
≺1, . . . ,≺N ,F1, . . . ,FN) is safe under filteringif, for all choices
of available pathsF̂i ⊆ Fi for i = 1, . . . , N , the routing system
(N,≺1, . . . ,≺N , F̂1, . . . , F̂N) is safe.

We interpret these definitions as follows. The set of available
pathsFi gives the set of paths that are physically possible for node
i to use, given the current network topology. Once all nodes have
chosen their route filters,̂Fi gives the set of paths that can ever be
used by nodei in route advertisements. Because we allow arbitrary
choice of filters, the resulting routing system should be stable and
safe regardless of the choices ofF̂1, . . . , F̂N that are made.

4. Ranking Classes and Safety
In this section, we study two natural ranking classes under which

ASes retain autonomy in setting rankings over paths. First,in Sec-
tion 4.1, we study the rankings where each AS is allowed to rank
paths solely based on the immediate next-hop AS, called “next-hop
rankings”. We show that (1) there are routing systems where each
node has only a next-hop ranking that are not safe; and (2) even
though all routing systems where nodes have next-hop rankings are
stable, there exist some routing systems of this form that are not
stable under filtering.

In Section 4.2, we study the properties of routing systems where
each node is allowed to choose a weight for all its outgoing links,
and rankings are derived from a “total” weight associated toeach
path. The total weight of a path is defined as the weight of the
first link on that path, plus a discounted sum of the weights ofall
remaining links on that path. We show that if the discount factor is
anything other than1 (which corresponds to shortest path routing),
then there exist weight configurations that yield a routing system
that is not safe.

4.1 Next-Hop Rankings
One natural set of rankings for a routing system is one where

each AS can express rankings over paths solely based on the next-
hop AS in the path. Such a class of rankings makes sense because
an AS establishes bilateral contracts with its immediate neighbors
and, as such, will most often wish to configure its rankings based on
the immediate next-hop AS en route to the destination. For exam-
ple, an AS will typically prefer sending traffic via routes through
its neighboring customer ASes over other ASes, since those cus-
tomer ASes are paying based on traffic volume. We formally define
next-hop rankings as follows:

Definition 13 (Next-hop ranking) Given N , ≺i is a next-hop
rankingif, for all nodesj, k with i, j, k distinct, we have:

ijPj0 ≺i ikPk0 ⇒ ijP ′

j0 ≺i ikP ′

k0, (1)

for all Pj , P
′

j ∈ PN
j , andPk, P ′

k ∈ PN
k . (Here we interpretPN

0 =
{ε}.)

Thus,≺i ranks paths based only on the first hop of each path.

Such a restriction on policy would still be sufficiently richto
achieve most traffic engineering goals, since most policiesare based
on the immediate next-hop AS [4]. Additionally, this class of rank-
ings is expressive enough for most current policy goals, because
most current routing policies are dictated according to theAS’s
business relationship with its immediate neighbor. In thissection,
we show that while systems with next-hop rankings are generally
stable, there exist examples that are unsafe, as well as systems that
are unstable under filtering.

3
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(a) Routing system
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(b) Activation sequence

Figure 4: Next-hop rankings are not safe in this routing system. AS1

prefers all paths through AS3 over the direct path to the destination0

(with ties broken deterministically) and prefers the direct path over all
paths through AS 2. Similarly, AS 3 prefers all paths via AS2, and so
forth.

In the following proposition, we routing systems with next-hop
rankings, provided that no filtering is employed. The proof is
straightforward, using a construction due to Feigenbaumet al. [6].

Proposition 1 Suppose(N,≺1, . . . ,≺N ,F1, . . . ,FN ) is a rout-
ing system such that≺i is a next-hop ranking for eachi, and
Fi = Pi for all i. Then there exists a stable path assignmentP

for this routing system.

We now show that there may existF̂1 . . . F̂N , whereF̂i ⊆ Fi for
all i, such that even though the system(N,≺1 . . . ≺N ,F1 . . .FN )

is stable, the filtered system(N,≺1 . . . ≺N , F̂1 . . . F̂N ) is unsta-
ble. That is, there exist routing systems with next-hop rankings for
which a stable path assignment exists, but introducing filtering can
yield a system wherenostable path assignment exists.

Observation 1 A routing system where each node has only a next-
hop ranking may not be safe.

Example 3Consider Figure 4. In this example, each AS ranks ev-
ery one of its neighboring ASes. For example, AS1 prefers all
paths that traverse AS3 as the immediate next hop over all paths
that traverse AS0 as the immediate next hop, regardless of the num-
ber of ASes each path traverses; similarly, AS1 prefers paths that
traverse AS0 as the immediate next hop over paths that traverse
AS 2. Each AS readvertises its best path to the destination to allof
its neighbors (i.e., the system has no filtering). Now consider the
activation sequence in Figure 4(b); if infinitely repeated,this activa-
tion sequence would be fair, and the routing system would oscillate
forever. Thus, the routing system is not safe.

Note that this system is notsafe, but it isstable: for example, the
path assignment(10, 210, 3210) is stable. Nodes 2 and 3 are using
paths through their most preferred nodes. Node 1’s most preferred
node, node 3, is using a path that already goes through node 1,
so node 1 is also using its most preferred consistent path. Asevery
node is using its most preferred consistent path, no node will change
paths when activated, so the path assignment is stable. �

A routing system where each node has a next-hop ranking may
not be safe, but Feigenbaumet al. showed that there is always
guaranteed to be at least one stable path assignment for suchrout-
ing systems [6]. However, allowing nodes to filter paths fromeach
other can create routing systems for which there isno stable path
assignment.

Observation 2 There exist routing systems with next-hop rankings
for which a stable path assignment exists, but introducing filtering
can yield a system whereno stable path assignment exists.
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Figure 5: This routing system is stable without filtering but unstable
under filtering. The figure shows a routing system with next-hop rank-
ings and filtering that is equivalent to the unstable routingsystem with
the rankings over paths shown in Figure 1.
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Figure 6: Routing system with edge weight-based rankings.

Example 4Consider Figure 5. As before, each AS ranks every one
of its neighboring ASes. Additionally, each AS may also declare
arbitrary filtering policies. In this example, each AS (other than the
destination) doesnotreadvertise any indirect path to the destination.
For example, AS1 does not advertise the path130 to AS 2, and
thus the path2130 is not available to AS2. Formally, we define
F1 = {130, 10}, F2 = {210, 20}, andF3 = {320, 30}.

The resulting routing system is equivalent to the system in Fig-
ure 1, once the filtered paths are removed from each node’s ranking.
Thus, the filtered routing system is unstable by the same reasoning
as in Example 1: for any path assignment in this routing system, at
least one AS will have a higher ranked consistent path (and, hence,
has an incentive to deviate from the path assignment). �

Using a construction similar to that in Example 2, it is possi-
ble to show how this example could arise in practice. The ex-
ample demonstrates the complex interaction between filtering and
rankings—a class of rankings that guarantees stability without fil-
tering can be unstable under certain filtering conditions.

4.2 Edge Weight-Based Rankings
There exists at least one routing system that preserves autonomy

and yet ensures safety under filtering: if each provider is allowed
to choose edge weights for its outgoing links, and each provider
ranks paths based on the sum of edge weights, the resulting “short-
est paths” routing system is guaranteed to be safe [12]. Since this
result holds for anyF1, . . . ,FN , any routing system built in this
way is guaranteed to be safe under filtering. In this section,we will
formulate a generalized model of suchedge weight-based rankings,
with both next-hop rankings and shortest path routing as special
cases. Such rankings do not allow providers to directly specify their
ranking; rather, the rankings of each provider arederivedfrom the
strategic choices made by all providers, namely, the choices of out-
going link weights that each provider sets. This notion of “derived”
rankings is a potentially useful method for ensuring autonomy in
interdomain routing protocols.

Definition 14 (Edge weight-based rankings)
(N,≺1, . . . ,≺N ,F1, . . . ,FN) is a routing system withedge
weight-based rankingsif there exists an assignment of edge weights

wij to each ordered pair of ASesi, j, together with a parameter
α ∈ [0, 1], such that for each ASi and pathsPi, P̂i ∈ PN

i with
Pi = ii1 . . . in0 andP̂i = ij1 . . . jm0, there holds:

Pi ≺i P̂i if and only if wii1 + α

 

n−1
X

k=1

wikik+1
+ win0

!

> wij1 + α

 

m−1
X

`=1

wj`j`+1
+ wjm0

!

.

The interpretation of this definition is as follows. Each node
chooses edge weights for all possible outgoing links;i.e., nodei
chooses a weightwij for each nodej. Next, nodei determines its
rankings by ordering all pathsPi = ii1 . . . in0 in increasing or-
der according to their weightwii1 + α(

Pn−1
k=1 wikik+1

+ win0),
whereα is a global parameter used to weight the tail of the path.
The parameterα allows us to compare two extreme points:α = 1,
corresponds to shortest path routing based on the matrix of edge
weightsw, while α = 0 corresponds to next-hop rankings. A nat-
ural question to ask is whether a routing system using edge weight-
based rankings can be safe for intermediate values ofα. It turns out
that theonly edge weight-based ranking class that can guarantee
safety (and safety under filtering), regardless of the weights chosen
by each provider, is the scheme defined byα = 1; i.e., shortest path
routing.

Observation 3 A routing system with edge weight-based rankings
may be unstable for anyα where0 < α < 1.

Example 5Consider the routing system shown in Figure 6. If the
system is such that each node prefers the two-hop path to the des-
tination, followed by the one-hop (i.e., direct) path, followed by
the three-hop path, then the system will be unstable becauseits
behavior will match Example 1. The routing system will be un-
stable if the following conditions are satisfied, for alli = 1, 2, 3:
wi,i+1 + αwi+1,0 < wi,0 < wi,i+1 + α(wi+1,i+2 + wi+2,0) (for
addition modulo3). If α = 1, these inequalities cannot be simul-
taneously satisfied for any nonnegative choice of the edge weight
vectorw, which is expected, sinceα = 1 corresponds to shortest
path routing. On the other hand, if0 < α < 1, then there are many
vectorsw that satisfy the inequalities above. For example, we can
choosew10 = w20 = w30 = 1, and letw12 = w23 = w31 = x,
for anyx such that(1− α)/(1 + α) < x < 1− α. For this defini-
tion of w, all three inequalities above will be satisfied, and thus the
rankings of each node will lead to the same oscillation described in
Example 1. �

5. Dispute Wheels and Dispute Rings
Our goal is to study the classes of rankings for which the routing

system is guaranteed to be safe under filtering. Griffinet al. have
shown that checking whether a particular routing system is safe is
NP-hard [12]. To simplify our study of safety, we introduce ause-
ful concept developed by Griffinet al. [12], known as adispute
wheel. Informally, a dispute wheel gives a listing of nodes, and two
path choices per node, such that one path is always preferredto the
other. If a routing system oscillates, then it is possible toconstruct
a dispute wheel whereby each node in the wheel selects its more
preferred path (via the node in the clockwise direction) over its less
preferred path. Griffinet al. showed that if a routing system with
no filtering does not have a dispute wheel, then it is safe.

The dispute wheel is a useful concept because it allows us to an-
alyze dynamic properties such as safety by simply looking atthe
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Figure 7: Relationships between safety and dispute rings and wheels.
Previous work showed that a routing system with no dispute wheel is
safe [12]. Section 5 presents all other relationships shownin this figure.
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Figure 8: Illustration of a dispute wheel. Dotted lines showpreferred
(indirect) paths to the destination. The nodesi1, . . . , im are pivots.

rankings of each node in the routing system. In this section,we for-
mally define a dispute wheel and show the relationship of Griffin’s
routing model, which simulates messages being passed between
nodes, to the model we use in this paper, which uses fair activa-
tion sequences. This relationship allows us to study safetyin terms
of the routing model in this paper. We then introduce a special type
of dispute wheel called adispute ringand show that, if any routing
system has a dispute ring, then it is not safe under filtering.Finally,
we relate dispute wheels to dispute rings and show that, although
the presence of a dispute ring guarantees that a routing system is
not safe under filtering, it does not necessarily imply that arout-
ing system is not safe without filtering. Figure 7 summarizesthe
results of this section and how they relate to results from previous
work [12].

5.1 Dispute Wheels and Safety

Definition 15 (Dispute wheel) Given a routing system(N,≺1,
. . . ,≺N ,F1, . . . ,FN ), a dispute wheelis a collection of distinct
nodesi1, . . . , im, called pivots, together with two sets of paths
P1, . . . , Pm and Q1, . . . , Qm, such that the following conditions
all hold (where we defineim+1 = i1 for notational convenience):

1. Pk ∈ Fik
for all k = 1, . . . , m;

2. Qk is a path fromik to ik+1 for all k = 1, . . . , m;

3. The pathP̂k = ikQkik+1Pk+10 is feasible,i.e., P̂k ∈ Fik
,

4. P̂k �ik
Pk.

Thus, each nodeik prefers the pathikQkik+1Pk+10 to the path
ikPk0, as shown in Figure 8.

We now show that safety in the Simple Path Vector Protocol
(SPVP) defined by Griffinet al. [12] implies safety in our model,
which allows us to use dispute wheels to analyze safety.

Proposition 2 Given a routing system, a fair activation sequence,
and an initial path assignmentP 0, let P 1, P 2, . . . be the resulting
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Figure 9: A routing system that is safe for any choice of filters.

sequence of path assignments according to the dynamics described
in Figure 3. Then there exists a sequence of messages in the Simple
Path Vector Protocol (SPVP) such that the same sequence of path
assignments is observed.

Thus, in particular, if a routing system is safe under SPVP, then
it is safe according to Definition 10.

Proof Sketch. The key difference between SPVP and the dynam-
ics we have defined is that SPVP isasynchronous(i.e., at any time
step, messages may be in flight), so different nodes may have dif-
ferent assumptions about the global path assignment at any time.
SPVP isnondeterministicwith respect to the timing of messages;
the delay between a routing update at nodej and the receipt of the
new route advertisement from nodej at nodei can be arbitrary. We
use this fact to construct, inductively, a sequence of messages such
that at timet, the current set of paths available to nodeit in SPVP
corresponds exactly toP t−1. Furthermore, we time the delivery
of routing updates to nodeit in SPVP so that any updates that oc-
curred since the last timeit was activated arrive exactly at the start
of time stept. In SPVP, this will initiate a routing update at nodeit,
which corresponds exactly to the activation ofit in our model (see
Figure 3).

Thus, the sequence of path assignments seen in this realization
of SPVP matches the sequence of path assignments seen in our dy-
namics. We conclude that if SPVP is guaranteed to be safe for the
given routing system (i.e., if eventually no further routing updates
occur, regardless of the initial path assignment), then therouting
system is safe according to Definition 10 as well. �

Corollary 1 If a routing system (N,≺1, . . . ,≺N ,
F1, . . . ,FN) has no dispute wheel, then it is safe under fil-
tering (and hence safe).

Proof. Choose subsetŝFi ⊆ Fi. Then, any dispute wheel for
the routing system̂S = (N,≺1, . . . ,≺N , F̂1, . . . , F̂N ) is also a
dispute wheel for the original routing systemS = (N,≺1, . . . ,
≺N ,F1, . . . ,FN ). Thus, the result follows from Proposition 2 and
the results of [12]. �

If no dispute wheel exists, the routing system is safe under filter-
ing, but, unfortunately, this condition is not a necessary condition
for safety, and thus not much can be said about a system that does
have a dispute wheel. Furthermore, there exist routing systems that
have a dispute wheel but which are safe under filtering.

Observation 4 The existence of a dispute wheel doesnot imply that
the routing system is unsafe, nor that the routing system is not safe
under filtering.



Example 6See Figure 9. The first two most preferred paths in each
node’s ranking form a dispute wheel, but the system is safe: the
system converges toP = (10, 20, 30). Furthermore,no combina-
tion of filters can create an oscillation. The two-hop paths are not
part of the stable path assignment, so filtering those paths has no
effect on the protocol dynamics. Filtering a three-hop pathwould
simply result in a node selecting the direct path to the destination,
and the node would never deviate from that path. If one directpath
is filtered, then the other two nodes will take direct paths tothe des-
tination and the node whose direct path is filtered will take its most
preferred three-hop path. If two direct paths are filtered, thenP is
simply a chain to the destination: the node that has the direct path
takes it, and the other two nodes will take two and three-hop paths.

�

5.2 Dispute Rings and Safety
In this section, we extend the dispute wheel notion to understand

the relationship between ranking expressiveness and safety under
filtering. We define a relationship between rankings called adispute
ring, a special case of a dispute wheel where each node appears at
most once. The dispute ring is a useful concept because it allows us
to prove anecessarycondition for safety under filtering.

Definition 16 (Dispute ring) A dispute ringis a dispute wheel—a
collection of nodesi1, . . . , im and pathsP1, . . . , Pm, Q1, . . . , Qm

satisfying Definition 15—such thatm ≥ 3, and no node in the
routing system appears more than once in the wheel.

Proposition 3 If a routing system has a dispute ring, then it is not
safe under filtering.

Proof. Assume that a routing system has a dispute ring, defined
by i1, . . . , im, and pathsQ1, . . . , Qm, P1, . . . , Pm. Then, con-
struct filters such thatFi containsonly the paths in that dispute
ring. Specifically,Fi contains the following paths fromPN

i (where
we defineim+1 = i1). (1) If i is not in the dispute ring, then
Fi = ∅. (2) If i is a pivot node on the dispute ring, sayi = ik,
thenFi contains exactly two paths:Pk, andikQkik+1Pk+10. (3)
If i is not a pivot node, buti ∈ Qk for somek, then we can write
Qk = ikQ1

kiQ2
kik+1. In this caseFi consists of the single path

iQ2
kik+1Pk+10. (4) If i is not a pivot node, buti ∈ Pk for some

k, then we can writePk = ikP 1
k iP 2

k 0. In this case,Fi consists
of the single pathiP 2

k 0. Since each node appears at most once on
the dispute ring, the preceding definition uniquely definesFi for all
nodesi.

There exists at least one consistent path assignmentP t

such that some pivot nodeik−1 uses its most preferred path,
ik−1Qk−1ikPk0, every other pivot nodeij uses pathijPj0, and
every other non-pivot nodei uses its only available path consistent
with this assignment. Then, the following activation sequence will
result in an oscillation:

1. Activate nodeik. Nodeik then switches to its more preferred
path,ikQkik+1Pk+10.

2. Activate nodes alongQk−1 in reverse order, from the node
immediately precedingik, to ik−1. All nodes alongQk−1

switch to the empty path,ε.

3. Activate nodeik−1. The pathik−1Qk−1ikPk0 is now incon-
sistent, soik−1 must switch to the pathik−1Pk−10.

4. Return to Step 1 withk replaced byk + 1, and iterate again.

Node Ranking
1 160 � 1240
2 240 � 2350
3 350 � 3160
4 43160 � 40
5 51240 � 50
6 62350 � 60

(a) Routing system

1

3
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2
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3
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1

0

(b) Dispute wheel

Figure 10: System that (1) has no dispute ring and (2) is not safe.

Path Assignment
Act. 1 2 3 4 5 6
— (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 0)
5 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)
1 (1 6 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)
3 (1 6 0) (2 4 0) (3 1 6 0) (4 0) (5 1 2 4 0) (6 0)
4 (1 6 0) (2 4 0) (3 1 6 0) (4 3 1 6 0) (5 1 2 4 0) (6 0)
5 (1 6 0) (2 4 0) (3 1 6 0) (4 3 1 6 0) (5 0) (6 0)
3 (1 6 0) (2 4 0) (3 5 0) (4 3 1 6 0) (5 0) (6 0)
2 (1 6 0) (2 3 5 0) (3 5 0) (4 3 1 6 0) (5 0) (6 0)
6 (1 6 0) (2 3 5 0) (3 5 0) (4 3 1 6 0) (5 0) (6 2 3 5 0)
4 (1 6 0) (2 3 5 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
2 (1 6 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
1 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
5 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 2 3 5 0)
6 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)

Figure 11: Activation sequence for unsafe system from Figure 10.

By the fourth step of the iteration above, the new path assignment is
“isomorphic” to the initial configuration: now nodeik is using the
pathikQkik+1Pk+10, and every other pivot nodeij is using path
ijPj0. Thus, as this iteration repeats, the dynamics will ultimately
reach nodeik once again with the original path assignment. Note
that all paths in this activation sequence are guaranteed tobe avail-
able and consistent, by the definition ofFi. To make this activation
sequence fair, we must also activate the nodes that are not inPi∪Qi

for any i in the dispute ring; and the non-pivot nodes inPi for all
i in the dispute ring. The nodes that are not inPi ∪ Qi for any i
have only the pathε available, and each non-pivot node inPi (for
all i) has only one path to the destination available. Therefore,these
nodes will never change paths, and do not affect the oscillation. �

We emphasize that, for simplicity, we reduced the set of filters,
Fi, to include only the set of paths that are involved in an oscil-
lation. We note that there will typically be more permissivesets
Fi that will also result in oscillation, because the dispute ring is
present in the underlying set of rankings. Our intent is to highlight
the most basic case of filtering that can cause an oscillation, given
the existence of a dispute ring.

Despite the fact that systems that are safe under filtering are guar-
anteed not to have a dispute ring, testing for a dispute ring is not
sufficient to guarantee that the routing system is safe, because of
the following observation

Observation 5 Routing systems that have a dispute wheel but do
not have a dispute ring may not be safe.

Example 7Consider the routing system described by Figure 10(a)
and the corresponding dispute wheel in Figure 10(b). Suppose



that nodes1, 2, and3 prefer two-hop paths over three-hop paths,
and the only paths available to nodes are those depicted in the
figure. This system is not safe; for example, supposeP 0 =
(1240, 240, 350, 40, 50, 60). The system then oscillates as shown
in Figure 11. However, the system has no dispute ring; in particular,
the dispute wheel depicted in Figure 10(b) cannot be reducedto a
dispute ring. �

6. Autonomy and Safety
In this section, we determine necessary and sufficient constraints

on the allowable classes of rankings, such that if each AS au-
tonomously sets its ranking while filtering is unrestricted, the pro-
tocol is guaranteed to be safe. We do so by characterizing whether a
routing system where rankings are independently specified by each
AS can induce either a dispute ring or a dispute wheel.

Any protocol’s configurable parameters implicitly constrain the
rankings ASes can express. For example, in BGP, the set of protocol
parameters is rich enough to allow providers to express essentially
any possible ranking over paths. In Section 6.1, we axiomatically
formulate two properties that should be satisfied by any protocol
that respects autonomy:permutation invarianceandscale invari-
ance. The first requires the rankings allowed by the protocol to be
independent of node labeling, while the second requires theallowed
rankings to scale gracefully as nodes are added to the system. We
abstract protocols satisfying these two conditions using the notion
of anautonomous ranking constraint(ARC) function; such a func-
tion takes the ranking of a single AS as input, and accepts it if that
ranking is allowed by the protocol. Observe thatanyprotocol that
respects the ability of ASes to autonomously choose rankings can
be represented by a corresponding ARC function.

In Section 6.2, we give two examples of such functions: the
shortest hop count ARC function (which only accepts rankings
where shorter paths are preferred to longer paths), and the next-hop
ARC function (which only accepts next hop rankings). We thende-
termine the class of ARC functions such that, as long as each node
independently chooses an acceptable ranking, the resulting global
routing system will be safe under filtering. In Section 6.3, we show
that the only ARC functions that are safe under filtering are nearly
equivalent to the shortest hop count ARC function.

6.1 ARC Functions
In this section, we define anautonomous ranking constraint

(ARC) function, which serves as an abstraction of the protocol’s
constraints on allowed rankings over routes. We start by defining
a local ranking constraint (RC) function, which takes as input the
ranking of a single ASi, ≺N

i and determines whether that ranking
is allowable.

Definition 17 (Local RC function) GivenN nodes, alocal rank-
ing constraint (RC) functionπ(≺i) takes as input the ranking of a
single ASi over all paths inPN

i , and returns “accept” if≺i is al-
lowed byπ, and returns “reject” otherwise. Ifπ(≺i) = “accept”,
we will say that≺i is π-accepted. If we are given a routing system
(N,≺1, . . . ,≺N ,F1, . . . ,FN) where each≺i is π-accepted, we
will say the routing system isπ-accepted.

Because we are restricting attention to protocols that respect the
ability of ASes to choose rankings autonomously, a first condition
that must be satisfied is that constraints on rankings shouldbe “lo-
cal”: that is, an AS should not face constraints on allowablerank-
ings due to the rankings chosen by other ASes. For this reason, lo-
cal RC functions act only on the ranking of a single AS. More gen-

erally, protocols might place system-wide constraints on the vector
of rankings chosen by all ASes; such protocols should be repre-
sented by “global” RC functions. Of course, such protocols do not
respect autonomy, and so we do not consider them here.

We now define two natural conditions any local RC function that
preserves autonomy should satisfy. First, the local RC function’s
conditions on rankings should provide consistent answers to differ-
ent ASes, regardless of thelabelingof the ASes. That is, for the lo-
cal RC function to preserve uniformity, each AS should be subject
to the same constraints on routing policies, and those constraints
should not depend on the particular assignment of AS numbersto
ASes. For example, suppose the routing system consists of three
ASes, and AS1 has an accepted ranking where it prefers1230 over
120, and120 over 10. Then we expect the same ranking should
be accepted, even if the labels of nodes arepermuted. For example,
suppose we permute the node labels that1 → 2, 2 → 3, and3 → 1.
Then node2 should also have an accepted ranking where it prefers
2310 over230, and230 over20 (because2310, 230, and20 are the
new paths that result after applying the permutation to1230, 120,
and10, respectively). If this property were not satisfied, then the
set of accepted rankings determined by a local RC function would
depend on the global assignment of AS numbers to nodes, not on
the characteristics of the individual rankings themselves. We call
this notionpermutation invariance; to define it precisely, we must
proceed through a sequence of definitions, starting withpath per-
mutation.

Definition 18 (Path permutation) GivenN nodes, letσ be a per-
mutation of the nodes1, . . . , N . Thenσ induces apath permuta-
tion on any pathP = ii1i2 . . . imj from i to j, yielding a new
pathσ(P ) = σ(i)σ(i1)σ(i2) . . . σ(im)σ(j) fromσ(i) to σ(j). We
always defineσ(0) = 0.

Definition 19 (Ranking permutation) GivenN nodes, letσ be a
permutation of the nodes1, . . . , N . Thenσ induces aranking per-
mutationon a ranking≺i for nodei over the paths inPN

i , yield-
ing a new rankingσ(≺i) over the paths inPN

σ(i), as follows: If

P1, P2 ∈ PN
i , and P1 ≺i P2, thenσ(P1)σ(≺i)σ(P2) (where

σ(Pi) is the path permutation of pathPi underσ).

Note that a permutation does not modify the routing system any
substantive way, except torelabelthe nodes, and to relabel the paths
and rankings and in a way that is consistent with the relabeling of
nodes.

Definition 20 (Permutation invariance) A local RC functionπ is
permutation invariantif, givenN and a ranking≺i for an ASi over
all paths inPN

i , the relation≺i is π-accepted if and only ifσ(≺i)
is π-accepted, for any permutationσ of 1, . . . , N .

Second, a local RC function should specify conditions for accep-
tance or rejection of rankings that “scale” appropriately with the
number of nodes in the system; we call this propertyscale invari-
ance. Suppose, for example, that a local RC function accepts a
ranking≺i overPN

i , whenN nodes are in the system. Now sup-
pose that we add nodes to the system, so the total number of nodes
is N̂ > N . As additional nodes are added to the system, addi-
tional paths become available as well, and each nodei must specify
its rankings over the larger setPN̂

i . Informally, scale invariance
of the local RC function requires thati should be able to “extend”
the ranking≺i to an accepted ranking overPN̂

i , without having
to modify its existing ranking overPN

i ; otherwise, the properties



of allowed rankings would depend on the number of nodes in the
global system.

To formalize this concept, we first define a subranking.

Definition 21 (Subranking) GivenN nodes, let≺i be a ranking
for ASi over all paths inPN

i . GivenN̂ > N , let ≺̂i be a ranking

for AS i over all paths inPN̂
i . Note thatPN

i ⊂ PN̂
i . We say

that≺i is a subrankingof ≺̂i if P1 ≺i P2 impliesP1≺̂iP2, for all
P1, P2 ∈ PN

i .

We now define scale invariance.

Definition 22 (Scale invariance)A local RC functionπ is scale in-
variantif the following condition holds: given anyπ-accepted rank-
ing ≺i for ASi overPN

i , and given anyN̂ > N , there exists at

least oneπ-accepted rankinĝ≺i overPN̂
i that has≺i as a sub-

ranking.

Permutation invariance guarantees that relabeling nodes does not
affect allowed rankings; scale invariance ensures that even as the
set of nodes in the network increases, the rankings over previously
existing paths should remain valid. Local RC functions thatsat-
isfy both permutation invariance and scale invariance correspond to
protocols that respect the ability of ASes to autonomously choose
rankings; we call such functionsautonomous ranking constraint
functions.

Definition 23 (ARC function) A local RC function is anau-
tonomous ranking constraint (ARC) functionif it is both permu-
tation invariant and scale invariant.

We want to derive the conditions under which protocols are guar-
anteed to be safe under filtering. Given that we use an ARC function
as an abstraction of the constraints placed by a protocol on rankings,
we would thus like to characterize ARC functions that can ensure
safety under filtering of the entire routing system (a globalprop-
erty). For this reason, we extend the definition of “safety under
filtering” to cover local RC functions.

Definition 24 Let π be a local RC function. We say thatπ is safe
under filteringif all π-accepted routing systems are safe under fil-
tering.

6.2 Examples of ARC Functions
We now present two simple examples of ARC functions: the

shortest hop count ARC function, which is guaranteed to be safe,
but is not expressive; and the next hop ARC function, which isex-
pressive, but not safe.

Example 8Our first example is theshortest hop count RC function,
πshc. Given the number of nodesN , the RC functionπshc ac-
cepts a ranking≺i for nodei if and only if the relation≺i strictly
prefers shorter paths (in terms of hop count) over longer ones. For-
mally, it accepts≺i, if, for any two pathsPi, P̂i ∈ PN

i such that
length(Pi) < length(P̂i), Pi �i P̂i. Ties may be broken arbitrar-
ily.

It is not hard to verify thatπshc is an ARC function. To check
permutation invariance, note that if≺i is allowed for nodei, then
of course for any permutationσ, the rankingσ(≺i) will also be
allowed for nodeσ(i), asσ(≺i) will also prefer shorter paths to
longer paths. Scale invariance is natural: given any shortest hop
count ranking≺i over PN

i , and givenN̂ > N , there obviously
exists at least one shortest hop count ranking overPN̂

i that has≺i

as a subranking. �

πshc forces all providers to use shortest AS path length, effec-
tively precluding each AS from having any policy expressiveness
in choosing rankings (other than when breaking ties). A moreflex-
ible set of rankings is allowed by thenext hop RC functionof the
next example.

Example 9 Thenext hop RC function, πnh, accepts a ranking≺i

for nodei if and only if ≺i satisfies Equation (1) in Section 4.1;
that is, if≺i is a next hop ranking.

πnh is clearly permutation invariant: if≺i is a next hop rank-
ing for nodei, then clearlyσ(≺i) is a next hop ranking for node
σ(i). Furthermore, note that any next hop ranking≺i is determined
entirely by the rankings of nodei over each possible next hop, to-
gether with tiebreaking choices among routes with the same next
hop. Thus, forN̂ > N , ≺i can be extended to a next hop ranking
overPN̂

i , by extending nodei’s rankings over each possible next
hop, and determining tiebreaking rules for any routes with next hop
N +1, . . . , N̂ . We conclude thatπnh is scale invariant as well, and
thus it is an ARC function.

πnh grants greater flexibility in choosing routing policies than
under the shortest hop count RC function,πshc, albeit at some cost.
With πnh, each ASi will choose a next hop ranking≺i without
any global constraints on the composite vector of next hop rank-
ings(≺1, . . . ,≺N ) chosen by the nodes. We have shown earlier in
Section 4.1 that there exist configurations of next hop rankings that
may not be stable or safe under filtering; thus, the ARC function
πnh can lead to a lack of safety. �

Next, we use dispute rings and dispute wheels to characterize the
class of ARC functions that are safe under filtering. We will prove
that this class is closely related to the ARC functionπshc.

6.3 Impossibility Results
We prove two main results in this section. Informally, the first re-

sult can be stated as follows: suppose we are given an ARC function
and an accepted ranking such that somen hop path isless preferred
(i.e., ranked lower) than another path of length at leastn + 2 hops.
Then, we can construct an accepted routing system with a dispute
ring; i.e., one that is not safe under filtering. The second result
states that if somen-hop path isless preferredthan another path of
length at leastn + 1 hops, then there exists a routing system with a
dispute wheel (though not necessarily a dispute ring). Notethat this
result is weaker than our first result, because a dispute wheel does
not necessarily imply that the system is not safe under filtering.

We interpret these results as follows: if we are searching for ARC
functions that are safe under filtering, we are very nearly restricted
to considering only the shortest hop count ARC function, because
all paths ofn hopsmust be more preferredthan paths of at least
n + 2 hops to guarantee safety under filtering, and all paths ofn
hops must be more preferred than paths of at leastn + 1 hops to
prevent dispute wheels.

Our first lemma, which is crucial to proving both of our results,
uses permutation invariance to construct a dispute wheel from a
single node’s rankings. We use a permutation to “replicate”pieces
of the dispute wheel until the entire wheel is completed.

To state the lemma, we will require the definition ofperiod of
a node with respect to a permutation, as well as the period of a
permutation. Given a permutationσ on the nodes1, . . . , N , let σk

denote the permutation that results whenσ is appliedk times;e.g.,
σ2(j) = σ(σ(j)), whereσ0 is defined to beσ.



Definition 25 (Period) Given a permutationσ on the nodes
1, . . . , N , we define theperiod of i under σ as periodi(σ) =
min{k ≥ 1 : σk(i) = i}.

Thus, the period ofi is the minimum number of applications ofσ
required to return toi.

Definition 26 (Permutation period) Given a permutationσ on
the nodes1, . . . , N , we define theperiod of the permutationσ as
period(σ) = min{k ≥ 1 : σk(i) = i for all i}.

Thus,period(σ) is the minimum number of applications ofσ
required to recover the original node labeling, and can be computed
as the least common multiple ofperiodi(σ), for 1 ≤ i ≤ N .

The following result establishes the conditions under which we
can apply a permutation to aπ-accepted ranking to obtain a dis-
pute wheel. We use this lemma as a building block for both of the
theorems in this section.

Lemma 1 Let π be an ARC function. Suppose there exists a node
i with a ranking≺i over PN

i , two pathsRi, P̂i ∈ PN
i , and a

permutationσ on 1, . . . , N such that: (1)≺i is π-accepted; (2)
Ri �i P̂i; (3) periodi(σ) = period(σ); and (4) there exists a
pathQ̂i from i to σ(i) such that:

Ri = iQ̂iσ(i)σ(P̂i)0. (2)

Then there exists aπ-accepted routing system with a dispute wheel.
This dispute wheel is defined by pivot nodesi1, . . . , im, and

pathsP1, . . . , Pm and Q1, . . . , Qm, wherem = period(σ), and
where fork = 1, . . . , m, we haveik = σk−1(i), Pk = σk−1(P̂i),
andQk = σk−1(Q̂i).

Proof Sketch. Details are in the technical report [5]. The key idea
of the proof is that, becauseperiodi(σ) = period(σ), we can re-
peatedly applyσ to the pathsQ̂i and P̂i and apply permutation
invariance to construct aπ-accepted routing system with a dispute
wheel. �

The preceding lemma reduces the search for a dispute wheel
to a search for a permutation and aπ-accepted ranking with the
stated properties. Observe from Equation (2) that the permuta-
tion σ maps the patĥPi into the “tail” of the pathRi; in apply-
ing Lemma 1, we will construct a partial permutation by mapping
a pathP̂i into the “tail” of Ri as in (2), and then we will complete
the permutation by adding nodes to the system if necessary sothat
periodi(σ) = period(σ). We use this approach to prove two the-
orems; the first states that if an ARC function accepts at least one
ranking that prefers ann-hop path less than a path of at leastn + 2
hops, then the ARC function is not safe under filtering.

Theorem 1 Letπ be an ARC function. Suppose there exists a node
i with π-accepted ranking≺i, and two pathsRi, P̂i ∈ PN

i such
that length(Ri) > length(P̂i) + 1 andRi �i P̂i. Then,π is not
safe under filtering.

Proof Sketch. Details are in the technical report [5]. The proof
relies on Lemma 1 to build a dispute wheel. First, using scalein-
variance of the ARC function, we show that the stated conditions
of the theorem ensure that there exist two pathsR′

i, P̂ ′

i such that:
length(R′

i) ≥ length(P̂ ′

i ) + 1; R′

i is more preferred than̂P ′

i for
someπ-accepted ranking; andR′

i and P̂ ′

i have no nodes in com-
mon, other thani and0.

We then use scale invariance and Lemma 1. We add nodes to
the system, and use them to build a permutationσ satisfying the
conditions of Lemma 1 (in particular, so thatP ′

i is mapped into the
tail of R′

i). Furthermore, we show that becauseP ′

i andR′

i share no
nodes in common, the dispute wheel of Lemma 1 is in fact a dispute
ring. This completes the proof, since by Proposition 3 the resulting
routing system is not safe under filtering.

�

The preceding theorem suggests that ARC functions that are safe
under filtering are closely related to the shortest hop countARC
function, because no rankings can be accepted wheren hop paths
are less preferred than (n+k)-hop paths, fork ≥ 2. The next theo-
rem draws this relationship even closer, by proving that there exists
a dispute wheel if an ARC function accepts any ranking where an
n-hop path is less preferred than an (n + 1)-hop path.

Theorem 2 Letπ be an ARC function. Suppose there exists a node
i with π-accepted ranking≺i, and two pathsRi, P̂i ∈ PN

i such
that length(Ri) = length(P̂i) + 1 and Ri �i P̂i. Then there
exists aπ-accepted routing system with a dispute wheel.

Proof Sketch. Details are in the technical report [5]. Our approach is
to map the patĥPi into the “tail” of the pathRi, which partially de-
fines a permutationσ. We then show how to add nodes to the system
and complete the permutationσ so thatperiodi(σ) = period(σ).
We then apply Lemma 1 to conclude there exists aπ-accepted rout-
ing system with a dispute wheel. �

The preceding results should not be interpreted as suggesting that
we cannot find a routing system that is safe under filtering, where
nodes prefer (n + k)-hop paths overn-hop paths. Indeed, from
Example 6, there are routing systems where nodes prefer3-hop
paths over1-hop paths, and yet the system is safe under filtering.
However, checking whether such systems are safe under filtering
requires global verification; the theorems we have presented sug-
gest that safety under filtering cannot be guaranteed through local
verification alone, if some nodes are allowed to prefer (n + k)-hop
paths overn-hop paths.

Furthermore, the two results in this section highlight the impor-
tance of dispute rings. Theorem 1 gives the strong result that an
ARC function that allows some (n + k)-hop path to be more pre-
ferred than ann-hop path cannot guarantee safety under filtering,
if k ≥ 2. Theorem 2 only guarantees the existence of a dispute
wheel if an ARC function that allows some (n + 1)-hop path to be
more preferred than ann-hop path—we cannot draw conclusions
regarding the stability or safety of a routing system on the basis of
the existence of a dispute wheel (see Example 6).

7. Conclusion
This paper explored the fundamental tradeoff between the ex-

pressiveness of rankings and routing safety, presuming that each
AS retains complete autonomy and filtering expressiveness.We
make three main contributions. First, we show that next-hoprank-
ings are not safe; we also observe that although rankings based on a
globally consistent weighting of paths are safe under filtering, even
minor generalizations of the weighting function compromise safety.
Second, we define adispute ringand show that any routing system
that has a dispute ring is not safe under filtering. Third, we show
that, providing for complete autonomy and filtering expressiveness,
the class of allowable rankings that guarantee safety is effectively



ranking based on (weighted) shortest paths. We also presented the
first study of the effects of filtering on stability.

In light these results, a natural question to ask is whether they are
positive or negative. In one sense, our results are grim, because they
suggest that if BGP remains in its current form and each AS retains
complete autonomy and filtering expressiveness (i.e., the only re-
alistic scenario for the foreseeable future), then the routing system
cannot be guaranteed to be safe unless each AS constrains itsrank-
ings over available paths to those that are consistent with shortest
hop count (or, alternatively, preferences that are based onconsistent
edge weights).

On the other hand, our results suggest several clear directions for
designing a policy-based routing protocol that is guaranteed to be
safe. Although we presented the ARC function as a proof tech-
nique, such a function could be implemented in practice to restrict
the rankings that operators specify in operational networks. We
foresee two possibilities: (1) the routing protocol remains as it is
today, and the constraints derived in Theorems 1 and 2 are checked
by a tool that statically detects configuration faults (e.g., rcc [3]);
or (2) the routing protocol is modified to prevent operators from
expressing rankings that violate these constraints in the first place.
Although we have not yet fully evaluated the merits of each ap-
proach in this work, we now briefly speculate on advantages and
disadvantages of each approach.

Enforcing the ranking constraints in a static checker wouldre-
quire no changes to the existing routing protocols and configuration
languages. Unfortunately, the results in Theorems 1 and 2 only pro-
vide global guarantees ifeveryAS abides by the constraints: as a
result, there may be little incentive for one AS to overly constrain
its policies if other ASes do not abide by the same constraints (and
creating the potential for unsafe routing in the process).

Implementing the ranking constraints by restricting the protocol
“knobs” requires wholesale changes to both the configuration lan-
guage and the routing protocol, but it would provide absolute guar-
antees for safety while still preserving the autonomy of each AS.
Our results in Section 4.2 suggest one possible direction: there we
show that routing using preferences derived from edge weights is
guaranteed to be stable. Suppose each AS ranks paths based on
the sum of edge weights to the destination and adjusts weights on
its incident outgoing edges to neighboring ASes. Rankings would
then be derived from the total path cost, but an AS might stillre-
tain enough flexibility to control the next-hop AS en route tothe
destination. Such an approach could ensure that the protocol is
safe on short timescales, while allowing “policy disputes”to oc-
cur on longer timescales, out-of-band from the routing protocol. Of
course, we must still explore whether this apparently more restric-
tive language could still implement the policies that operators want
to express. Furthermore, a more restrictive policy language would
guarantee safety, but would likely cause routing to oscillate on a
slower timescale as operators observe the routing protocolconverg-
ing to undesirable paths. It is our position that this designdecision
is exactly the right one: the routing protocolshouldconverge on a
fast timescale and accurately reflect network topology, while policy
conflicts should be resolved on slower, “human” timescales.
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