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ABSTRACT

Thousands of competing autonomous systems must coopedthte w
each other to provide global Internet connectivity. Each au
tonomous system (AS) encodes various economic, busineds, a
performance decisions in its routing policy. The currerteiido-
main routing system enables each AS to express policy uairlg
ingsthat determine how each router in the AS chooses among dif-
ferent routes to a destination, afiltersthat determine which routes
are hidden from each neighboring AS. Because the Intercenis
posed of many independent, competing networks, the inteago
routing system should provideutonomy allowing network opera-
tors to set their rankings independently, and to have notints

on allowed filters. This paper studies routing protocol iitgtun-

der these conditions. We first demonstrate that certairimgalthat
are commonly used in practice may not ensure routing stybili
We then prove that, when providers can set rankings andsféter
tonomously, guaranteeing that the routing system will eoge to

a stable path assignment essentially requires ASes to ks
based on AS-path lengths. We discuss the implications dfethe
results for the future of interdomain routing.

Categories and Subject Descriptors

C.2.6 [Computer Communication Networks]: Internetwork-
ing; C.2.2 Computer Communication Networks]: Network
Protocols—Routing Protocols

General Terms
Design, Reliability, Performance, Theory
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Routing, Internet, policy, autonomy, safety, stabilit@z B, protocol

1. Introduction

The Internet’s routing infrastructure is made up of thoasaof
independently operated networks that cooperate to exetgingal
reachability information using an interdomain routingtoeol, the
Border Gateway Protocol, Version 4 (BGP) [16]. This coopera
tion occurs in a landscape where these independent netwarks
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autonomous systems, compete to provide Internet serviceP B
facilitates this “competitive cooperation” by enablingwerk op-
erators to express routing policies that are consistetit désired
economic, business, and performance goals.

Rankingandfiltering are the two main mechanisms that operators
use to implement their policies. Ranking determines whfchany
possible routes to a destination should be used, thus pngvah
autonomous system (AS) the freedom to specify preferenass o
multiple candidate paths to a destinatieny, specifying a primary
and a backup path). Filtering allows an AS to selectivelyeatise
routes to some autonomous systems and hide routes fronspther
thereby controlling which neighboring autonomous systeersd
traffic over its infrastructure.

There are two important characteristics of policy routiagton-
omyandexpressivenes#utonomy is the ability of each AS to set
its rankings and filters independent of the others. Expressss
refers to the flexibility of the routing protocol in allowirgperators
to specify rankings and filters. Ranking expressivenessraétes
what classes of rankings over routes are permitted by thequb
while filtering expressiveness determines the range ogréliers
that are allowed.

The combination of expressiveness and autonomy has, ia larg
part, been the reason for the success of BGP over the pastedeca
We contend that both autonomy and filtering expressivenékisav
requirementdgor policy routing for the foreseeable future. Previous
studies of routing stability assume that ASes are willingom-
promise some degree of autonomy, filtering expressivenessth
(see Section 2). However, autonomy preserves each ASit/abil
set its policies without coordinating with any other ASt&ilng ex-
pressiveness gives an AS flexibility in how it establishestiarts
with another AS, a task that should be unconstrained.

Ideally, an interdomain routing system should preserveraut
omy, filtering expressiveness, and ranking expressivenkessyv-
ever, the ability to specify highly expressive rankings esnat
considerable cost to system robustness: as has been absgrve
Varadharet al. and Griffinet al, among others, if there are no con-
straints on the rankings that an AS can specify, BGP maylateil
forever [12, 18].

Example 1Consider Figure 1[12, 18]. ASds 2, and3 each pre-
fer the indirect path through their neighboring AS in thec&leise
direction over the direct path to the destination,All other paths
are filtered. This configuration has no stable path assighthen

a path assignment from which no node would deviate). For exam
ple, consider the path assignmém®, 210, 30); in this case, AS
has a better path available30, so it switches paths. This switch
breaks the patR10, causing A2 to switch to its second choice,
path20. The resulting path assignmeiit30, 20, 30), is a permu-
tation of the original path assignment: this time, A8as the path
320 available, so it switches. This oscillation continues Vere B
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Figure 1: Instability can arise when each AS independently pecifies
rankings [12, 18]. Each circle represents an AS. A8 is the destination.
The listing of paths beside each node denotes a ranking oveafhs.

As the previous example suggests, full autonomy and expesss
ness can have undesirable consequences. Routing profmtztieu
messages should reflect actual reachability changes irethrk
topology or policy. Unfortunately, in BGP, conflicting pcikes can
cause oscillations that produce endless streams of roufidgtes
that are unrelated to changes in topology or policy. Thitainisity
creates numerous performance problems, may cause netaork p
titions, and complicates diagnosis and debugging of prosln
the routing system. Furthermore, a network operator hasayatav
guarantee that any given configuration of rankings and dil&H
not adversely interact with the policies of other ASes. ghtiof
these issues, developing rigorous conditions on policyesgive-
ness that guarantee routing stability, while preservirtgraamy;, is
crucial.

This paper explores the following question: provided trathe
AS retains complete autonomy and complete filtering express
ness, how expressive can rankings be while guaranteeie sta
routing? This question is important because ranking aumyno
and filtering expressiveness reflect the realities of howsAspec-
ify policies today, and little is known (beyond the resulisveyed
in Section 2) about the tradeoffs between autonomy and sxpre
siveness as far as routing stability is concerned, paatityulnder
filtering. In particular, our work is the first to develop nesary
conditions for stability under realistic assumptions atautonomy
and expressiveness and the first to derive necessary corgdftir
stability in policy routing.

This paper makes three main contributions. First, in Sectid,
we show that rankings based solely on the immediate nextAl®p
en route to the destination may never reach a stable pathnassi
ment from an arbitrary initial state;e., next-hop rankings, which
are common in practice, ar®t safe Moreover, under unrestricted
filtering, a routing system with next-hop rankings may havesta-
ble path assignment. In addition to their operational iggiibns,
these results are also somewhat surprising, because ogxgahk-
ings with no route filtering always have one stable path assent.
We also observe that although rankings based on a globailiso
tent weighting of paths are safe under filtering, even mimoegal-
izations of the weighting function compromise safety (®ec4.2).

Second, we define dispute ring a special case of the “dispute
wheel” (a group of nodes whose rankings have a particulan)for
of Griffin et al. [12], and show that any routing protocol that has
a dispute ring is not safe under filtering (Section 5). Ushydis-
pute wheel concept, Griffiat al. showed a sufficient condition for
safety, proving that if a routing system is unsafe then ittrhase a
dispute wheel. In contrast, to our knowledge, our resulésfirst
known necessary condition for safety under filtering.

Third, we show that, providing for complete autonomy and fil-
tering expressiveness, the set of allowable rankings thatagtee
safety is effectively ranking based on (weighted) shopesis. In
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Figure 2: Constraints on filtering and topology are not enforceable.

PSINet

Section 6, we prove that any routing system that permitsspath
lengthn + 2 to be ranked over paths of lengthcan have a dis-
pute ring, and is thus unsafe under filtering. We also proe¢ th
any routing system that permits paths of length 1 to be ranked
over paths of lengtl can have a dispute wheel. In summary, our
results indicate that stable policy routing with providetanomy
and expressive filtering requires tight constraints on irage

Our findings may be interpreted in several ways. The optimist
will note that checking a set of rankings to ensure safetyivs t
ial, because all it requires is that BGP routers modify theisien
process to consult a route’s “local preference” attributéy af-
ter considering its AS path length. The pessimist, howevety
conclude that guaranteeing safe routing while preservingreomy
may Yield constraints on expressiveness that are too cimistg.
In either case, the results proved in this paper about trasfuental
tradeoff between the expressiveness and autonomy may hiele g
the design of stable interdomain routing protocols in tharkt

2. Background and Related Work

A seminal paper by Varadhaet al. observed that policy-based
interdomain routing protocols could oscillate and defirfea ¢on-
cept of safety [18]. Varadhaet al. also conjectured that routing
systems that allow rankings other than those based on wogxt-h
rankings or shortest path routing may be unsafe [18].

Griffin et al. asked how expressive an autonomous, robust rout-
ing system can be [11]; our paper addresses this questioadhvan
et al. showed that a routing system with an acyclic topology will
have at least one stable path assignment if participanterdsirex-
press next-hop preferences [18]. In this paper, we use &rogtien
due to Feigenbaurat al. [6] to show that systems with next-hop
rankings always have at least one stable routing. Howewenglgo
show that when BGP’s protocol dynamics are taken into adgoun
restricting each AS to only next-hop rankings does guarantee
that the routing system will be safe.

Gao and Rexford derived sufficient constraints on rankifigs,
tering, and network topology to guarantee routing stabilihey
also observe that these constraints reflect today’'s commaat p
tice [7, 8]. They showed that if every AS considers each of its
neighbors as either a customer, a provider, or a peer, aryd che-
tain local constraints on rankings and filtering, and if tbating
system satisfies certain topology constraints, then BGRaldes
However, their model does not incorporate ranking indepané,
as their proposed topological constraints are global. hieanore,
their model restricts filtering; the example below illustswhy
these restrictions may sometimes be too strict.

Example 2 Figure 2 shows a situation that occurred in 2001 [2].
When PSINet terminated its peering with AboveNet, Abovebist
connectivity to PSINet’s customerd;. To restore connectivity,
AboveNet bought “transit” service from Verio (already a peé
PSINet), but only for routes to PSINet and its customers.

Verio does not filterd; (or any of PSINet's prefixes) from
AboveNet, which is only possible if Verio treats AboveNetas
customer. The constraints imposed by Gao and Rexford s$tate t



an ASmustprefer customer routes over peering rodt&his con-
straint requires Verio to rank AboveNet's routedpover any other
available routes td, in order to guarantee stability, which restricts
Verio’s flexibility in how it can select routes. Establisbim new
business relationship (and, hence, altering its filteriolicies) re-
quiresVerio to change its rankings as well. |

Researchers have previously studigabal conditions to guaran-
tee the safety of routing systems; global conditions prestivat the
routing system does not preserve autonomy. Gréfial. showed
that, if the rankings of the ASes in a routing systems do nohfa
dispute wheela concept that describes global relationship between
the rankings of a set of ASes), then the routing system is[¢ale
Griffin et al. also examinedobustnessthe property that safety is
guaranteed even if arbitrary nodes or edges are removedtfrem
graph. We view robustness as a special case of filtering: vieimo
an edge can be achieved if the ASes incident to that edgedllter
routes through that edge; removing a node entails havingSis
filter all routes through that node.

Griffin et al. also showed how to modify a BGP-like path vector
protocol to detect the existence of a dispute wheel but lespeci-
fied how the ASes should resolve the dispute wheel [13]. Majthi
and Katz defined a global invariant for determining safetyewh
at most one AS deviates from the conditions of Gao and Rex-
ford [15]. Govindanet al. proposed a routing architecture where
ASes coordinate their policies [9, 10] using a standardjzaity
specification language [1]. Jaggard and Ramachandrannpeese
global conditions to guarantee safety of routing systenas &
low ASes to express only next-hop preferences over routelsge-
signed centralized and distributed algorithms to checkelggobal
conditions [14]. Sobrinho defined concepts that describbajlre-
lationships between preferences and incorporated sgenabus
results (including those of both Griffeet al.[12] and Gao and Rex-
ford [8]) into a single algebraic framework [17]. In contr&s pre-
vious work, this paper recognizes autonomy and rankingesx<pr
siveness as requirements and studies the conditions urden &
policy-based interdomain routing protocol can be stable.

3. Routing Model and Definitions

We now define our routing model. After introducing some basic
terminology, we formally define two notions of good beha\fimr
routing protocols:stability and safety Finally, we extend each of
these two definitions to handle filtering expressiveness.

3.1 Preliminaries
We consider a model consisting 8f ASes (nodeg) labeled

k, we will write & € P if node k appears inP. For clarity, given
a pathP from i to j, we will often denoteP by :Pj; furthermore,
if Pis a path fromi to j, andQ is a path fromj to k, then we will
denote the concatenation BfandQ@ by i PjQk.

We denote the set d@ll paths fromi to 0 (i.e., all paths on the
complete graph) using the nodks . ., N by P}¥. Given the set of
nodes{1,..., N}, each AS will choose aranking <; over the set
of all pathsPiN, defined as follows.

Definition 2 (Ranking) Aranking=; for node: is a total ordering
over the set of all path®;"; thus, given any two pathB, Q € P},
either P <; @ (i prefers@ to P) or P —; Q (i prefersP to Q).

An AS may always choose tlempty pathe, which is equivalent
to total disconnection from the destination nadeThus, we have
e € PN forall : and N. Furthermore, we assume that every AS
strictly prefers connectivity to disconnectivity, so that>-; ¢ for
alPepl.

Note that all paths may not be available to nadéeue to both
topological constraints and filtering by other nodes. Wd usle
F; € P} to denote the set of paths actually available for use by
node:i. The empty path is always availables., ¢ € F;.

A routing systemis specified by the rankings of the individual
nodes, together with the paths available to the individuales.
Observe that we have decoupled the “routing policy” of eaéh A
1 into two components: the rankings; of AS i over route adver-
tisements received; and a determination of which paths laeeckil
from other ASes. The filtering decisions of all nodes, togethith
physical constraints on the network, yield the sgts. .., Fn. We
thus have the following formal definition of a routing system

Definition 3 (Routing system) A routing systemis a tuple (NN,
<1,...,<n,F1,...,Fn), where node has ranking=<; over the
setP}, and F; is the set of paths available to node

A routing system specifies the input to any interdomain rati
protocol we might consider. Given this input, the protoduobsd
converge to a “routing tree”: that is, an assignment of a flagach
AS, such that the routes taken together form a spanningacged
at0. To formalize this notion, we must define path assignmends an
consistent paths.

Definition 4 (Path assignment) A path assignmerfor the routing
system(N, <1,...,<n~,F1,...,Fn) is a vector of paths? =
(P1,..., Pn)such that, for ali, P; € F;.

1,...,N. Each of these nodes wishes to establish a path (defined Thus, a path assignment is an assignment of a feasible path to

below) to a single destination, labeled

Definition 1 (Path) A pathfromi to j is a sequence of nodds =
9142 - . . imj With no repetition,;i.e., such thati, # i, if u # v,
andi, # 1, j for all u.

We denote the number of hops in a patrasiength(P); note
that a path witm nodes has — 1 hops. In addition, given an AS

1Gao and Rexford present a weaker constraint that allows atoASnk
routes learned from customers and peers over those frorndpreybut does
not require customer routes to be strictly preferred over ©frem peers.
This relaxed condition requires that there are no instandese an AS’s
customer is also a peer of another one of the AS’s peers. @$epExam-
ple 2 could also violate this constraint on the topology: NRSlis Verio's
customer fordy, but it would be reasonable for PSINet to peer with another
of Verio’s peers, since all are “tier-1” ISPs.

2In this paper, we use the terms “AS” and “node” interchangyeab

each node, where feasibility is determined by the set of pafhs
Even though each node has a path assigned, these paths nii&y not
consistent node: may be assigned a path) = iijO, wherej is
the first node traversed af;, and whereﬁ’j is a path fromj to 0.
However, the pattﬁj may not be the same as the p&thassigned
to j in the path assignmet®; in fact, ]3]- may not even be in the set
of feasible pathsF;. For example, a node or link along the paﬁp
may experience a failure, causing the routing protocol thavaw
the path; if; has heardA such a withdrawal szhag not, then it
is possible tha?; = i3 P;0 until nodei learns thatP; no longer
exists. To formally capture such situations, we define ctest
paths and consistent path assignments.

Definition 5 (Consistent path) Given a path assignmenP, a
path P; for nodei is consistentvith P if one of the following holds:
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1. P =¢or
2. P, =i0; or
3. P, = ijP;0, for somej # i.

Definition 6 (Consistent path assignment)A consistent path as-
signmentfor the routing systenN, <1,...,<n~, Fi,...,Fn) IS
a path assignment vectd® = (P, ..., Px) such that for alli, P;
is consistent wittP.

A routing protocol where packets are forwarded solely orides
nation should ultimately assign paths that are consistéthteach
other.

3.2 Stability and Safety

Informally, a path assignment &ableif it is consistent, and no
node has a more preferred consistent path available.

Definition 7 (Stable path assignment)Given a routing system
(N, <1,...,<n,F1,...,Fn), and a consistent path assignment
P, we say thatP is stableifAfor all nodesz, and all pathslsi cF;
that are consistent witl?, P; <; P;.

Definition 8 (Stable routing system) The routing system(N,
<1,...,=<n,F1,...,Fn) is stableif there exists at least one sta-
ble path assignmer®.

The stability of a routing system does not indicate whettreu&
ing protocol will convergeegardlessof the initial path assignment.
The safetyproperty, which states that a protocol eventually con-
verges, regardless of the initial path assignment and ioglef the
routing messages, captures this notion.

In defining safety, we will consider a simplified abstractiohn

Routing protocol dynamics
Attimet — 1, the current path assignmenth%._1; i.e., each node
i has currently selected path . to the destinatiofd. At time¢:

1. Agiven nodei is activated.

2. Nodei; updates its path to be thmost preferred patlfac-
cording to<;,) consistent withP;_;. That is,

(&) P;,,: € Fi, is consistent withP;_;, and
(b) Pi,: =i, Pi,V P;, € F;, consistent withP,_;.

3. All other nodes leave their paths unchanged.

Figure 3: The routing protocol dynamics, given an activatiomn sequence
i1,12,. ... The process starts from an initial path assignmentPy.

paths remain unchanged. It is clear that this decision grogelds
a sequence of path assignmefts, P, . . ..

After any given activation stef the overall path assignmef;
may not be consistent. Inconsistencies reflect the factaimatde
only updates its path assignment in response to the redeipbate
advertisement. If, at tim&), a node: is using a path that traverses
some other nodg that has since changed paths, then nodeuld
obliviously continue to use (and advertise) tivatonsistentpath
until it receives a routing update that reflects that the patbugh
j has disappeared or changed. When activated, say, at timg),
nodes would discover that the path it was using was inconsistent
with P, and would then select its highest-ranked path that was
consistent withP,. The activation of a node at some timeor-
responds to that node receiving all available routing imfation in
the system up to that time.

With the definition of our protocol dynamics in hand, we can
define protocokafety Given a routing system and an activation se-

BGP. We model the process by which nodes receive route adver‘quence, we say that the system has converged if, after soitee fin

tisements from other nodes and subsequently update theirawe
decisions. In this paper, we will consider a protocol dyrawiere
at each time step only a single ASdstivated when activated, an
AS immediately processes all pending incoming route atbeert
ments, and then makes a route decision. Formally, this maitiel
translate into a path assignment sequence where exactlycatee
(the “activated” node) changes its route at any given tirap.st

A routing system is safe if no oscillation occurs regardtEgbe
order in which nodes are activated.

Definition 9 (Fair activation sequence) The sequences, iz, ...
is a fair activation sequenc# each nodei = 1,..., N appears
infinitely often in the sequence.

This definition of fair activation sequence is similar totthae-
sented by Gao and Rexford [8], except that in our definition we
only activate one node at a time. This distinction is not majee
can interpret the Gao and Rexford dynamics as a model whére ou
standing routing messages may be in flight when a particulde n
is activated.

We now define our simplified model of the routing protocol dy-
namics: that is, starting from an initial path assignméht, and
given a fair activation sequence of nodesis, . . ., what is the re-
sulting observed sequence of path assignméhtsP,,...? To
formalize the dynamics of our model, we consider an abstract
of the BGP decision process described in Figure 3. At each tim

time, the path assignment remains invariant for all futimeet A
protocol issafeif it converges to a stable path assignment, regard-
less of the initial path assignment and fair activation sege.

Definition 10 (Safety) A routing system (N, <q,...,
<n,F1,...,Fn) is safeif for any initial path assignment
P, and fair activation sequenca, iz, . . ., there exists a finitd"
such thatP; = Pr forallt > T.

Because the activation sequences are fair in the preceeiitg d
nition, if a routing system converges 1, then the resulting path
assignment to which the system converges must be both temtsis
and stable. If not, at least one node would change its pathrass
ment eventually.

3.3 Filtering

In this paper, we are interested in the stability and safésys-
tems that result when nodes are allowed to filter routes frtiraro
nodes. We thus require conditions stronger than stabititysafety,
known asstability under filteringandsafety under filteringInfor-
mally, a routing system is stable (respectively, safe) ufittering
if, under any choices of filters made by the ASes, the reguitnit-
ing system is always stable (respectively, safe).

Definition 11 (Stable under filtering) The routing system(N,
<1,...,<n,F1,...,Fn) is stable under filteringif, for all

t, a nodei; is activated, and chooses its most preferred available choices of available pathS:‘iAg Fifori = 1,...,N, the rout-

path consistent with the path assignméht_;. All other nodes’

ing system(N, <1,...,<n,F1,...,Fx) is stable.



Definition 12 (Safe under filtering) The routing system (N,
<1,...,=<n,F1,...,Fn) is safe under filteringf, for all choices
of available pathsf'z- C Fifori=1,...,N, the routing system
(N, <1,...,<n,F1,...,Fn) is safe.

We interpret these definitions as follows. The set of avéglab
pathsF; gives the set of paths that are physically possible for node
i to use, given the current network topology. Once all node® ha
chosen their route filterst; gives the set of paths that can ever be
used by nodé in route advertisements. Because we allow arbitrary
choice of filters, the resulting routing system should bélstand
safe regardless of the choices, . . ., Fn that are made.

4. Ranking Classes and Safety

In this section, we study two natural ranking classes undhchv
ASes retain autonomy in setting rankings over paths. Rirsec-
tion 4.1, we study the rankings where each AS is allowed tk ran
paths solely based on the immediate next-hop AS, called-inex
rankings”. We show that (1) there are routing systems whacé e
node has only a next-hop ranking that are not safe; and (2) eve
though all routing systems where nodes have next-hop rgakire
stable, there exist some routing systems of this form thamnat
stable under filtering.

In Section 4.2, we study the properties of routing systemarezh
each node is allowed to choose a weight for all its outgoinkgsli
and rankings are derived from a “total” weight associatedaoch
path. The total weight of a path is defined as the weight of the
first link on that path, plus a discounted sum of the weightallof
remaining links on that path. We show that if the discountdats
anything other than (which corresponds to shortest path routing),
then there exist weight configurations that yield a routipgtam
that is not safe.

4.1 Next-Hop Rankings

One natural set of rankings for a routing system is one where
each AS can express rankings over paths solely based onxtie ne
hop AS in the path. Such a class of rankings makes sense lecaus
an AS establishes bilateral contracts with its immediatghimrs
and, as such, will most often wish to configure its rankingsellaon
the immediate next-hop AS en route to the destination. Famex
ple, an AS will typically prefer sending traffic via routesdigh
its neighboring customer ASes over other ASes, since those ¢
tomer ASes are paying based on traffic volume. We formallyndefi
next-hop rankings as follows:

Definition 13 (Next-hop ranking) Given N, <; is a next-hop
rankingif, for all nodesj, k with 4, j, k distinct, we have:

i P;0 <; ikP,0 = ijPj0 <; ikP0, (1)
forall P;, Pj € P)¥,and Py, P/, € P} . (Here we interprePy’ =

{e1)

Thus,=<; ranks paths based only on the first hop of each path.

Such a restriction on policy would still be sufficiently ri¢h
achieve most traffic engineering goals, since most polaiedased
on the immediate next-hop AS [4]. Additionally, this clagsank-
ings is expressive enough for most current policy goalsabse
most current routing policies are dictated according to Alss
business relationship with its immediate neighbor. In gastion,
we show that while systems with next-hop rankings are gdéigera
stable, there exist examples that are unsafe, as well ansyshat
are unstable under filtering.

Activate | 1 2 3
= @0) 20) (320
3,0,2 2,01 2 10)  (210) (320)
S 1 (1320) (210) (320)
@ 3 (1320) (210) (3210)
I 2 (1320) (20) (3210)
1 10) (20) (3210)
1'0’3@ 3 (10) (20 (320)

(a) Routing system (b) Activation sequence

Figure 4: Next-hop rankings are not safe in this routing sysem. AS1
prefers all paths through AS 3 over the direct path to the destination0
(with ties broken deterministically) and prefers the dired path over all
paths through AS 2. Similarly, AS 3 prefers all paths via AS2, and so
forth.

In the following proposition, we routing systems with néxip
rankings, provided that no filtering is employed. The pro®f i
straightforward, using a construction due to Feigenbatial. [6].

Proposition 1 Supposg N, <1, ..., =<n~,F1,...,Fn) IS @ rout-
ing system such thak; is a next-hop ranking for each, and
F; = P; for all i. Then there exists a stable path assignment
for this routing system.

We now show that there may exi&t . . . Fn, whereF; C F; for
all 7, such that even though the systém, <1 ... <y, Fi ... Fn)
is stable, the filtered systeW, <1 ... <, Fi ... Fn) is unsta-
ble. That is, there exist routing systems with next-hop iragk for
which a stable path assignment exists, but introducingifilgecan
yield a system wherro stable path assignment exists.

Observation 1 A routing system where each node has only a next-
hop ranking may not be safe.

Example 3Consider Figure 4. In this example, each AS ranks ev-
ery one of its neighboring ASes. For example, APrefers all
paths that traverse A$ as the immediate next hop over all paths
that traverse A® as the immediate next hop, regardless of the num-
ber of ASes each path traverses; similarly, ABrefers paths that
traverse AS) as the immediate next hop over paths that traverse
AS 2. Each AS readvertises its best path to the destination tf all
its neighborsi(e., the system has no filtering). Now consider the
activation sequence in Figure 4(b); if infinitely repeattis activa-
tion sequence would be fair, and the routing system wouldlate
forever. Thus, the routing system is not safe.

Note that this system is netfe but it isstable for example, the
path assignmertl0, 210, 3210) is stable. Nodes 2 and 3 are using
paths through their most preferred nodes. Node 1's mosepesf
node, node 3, is using a path that already goes through node 1,
so node 1 is also using its most preferred consistent patlevéy
node is using its most preferred consistent path, no nodefeéihge
paths when activated, so the path assignment is stable. W

A routing system where each node has a next-hop ranking may
not be safe, but Feigenbauet al. showed that there is always
guaranteed to be at least one stable path assignment forautch
ing systems [6]. However, allowing nodes to filter paths freach
other can create routing systems for which theredstable path
assignment.

Observation 2 There exist routing systems with next-hop rankings
for which a stable path assignment exists, but introducitheriing
can yield a system wher® stable path assignment exists.
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Filter 3* from 2 \@/Fnter 2* from 1
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Figure 5: This routing system is stable without filtering but unstable
under filtering. The figure shows a routing system with next-lop rank-
ings and filtering that is equivalent to the unstable routingsystem with
the rankings over paths shown in Figure 1.

Figure 6: Routing system with edge weight-based rankings.

Example 4Consider Figure 5. As before, each AS ranks every one
of its neighboring ASes. Additionally, each AS may also deel
arbitrary filtering policies. In this example, each AS (atti@n the
destination) doesotreadvertise any indirect path to the destination.
For example, ASL does not advertise the patl30 to AS 2, and
thus the patt2130 is not available to AS. Formally, we define
Fi = {130, 10}, F» = {210, 20}, andF; = {320, 30}.

The resulting routing system is equivalent to the systemign F
ure 1, once the filtered paths are removed from each nod&san
Thus, the filtered routing system is unstable by the samenizs
as in Example 1: for any path assignment in this routing sysée
least one AS will have a higher ranked consistent path (e dy
has an incentive to deviate from the path assignment). |

Using a construction similar to that in Example 2, it is pessi
ble to show how this example could arise in practice. The ex-
ample demonstrates the complex interaction between fijeand
rankings—a class of rankings that guarantees stabilitirowit fil-
tering can be unstable under certain filtering conditions.

4.2 Edge Weight-Based Rankings

There exists at least one routing system that preserves@uto
and yet ensures safety under filtering: if each provider|saadd
to choose edge weights for its outgoing links, and each deovi
ranks paths based on the sum of edge weights, the resultiogt-'s
est paths” routing system is guaranteed to be safe [12].eShis
result holds for any#, ..., Fn, any routing system built in this
way is guaranteed to be safe under filtering. In this secti@will
formulate a generalized model of sustige weight-based rankings
with both next-hop rankings and shortest path routing asiape
cases. Such rankings do not allow providers to directlyifptteir
ranking; rather, the rankings of each provider deeivedfrom the
strategic choices made by all providers, namely, the ckai€eut-
going link weights that each provider sets. This notion arided”
rankings is a potentially useful method for ensuring autoyadn
interdomain routing protocols.

Definition 14 (Edge weight-based rankings)
(N, <1,...,<n,F1,...,Fn) is a routing system withedge
weight-based rankingéthere exists an assignment of edge weights

w;; to each ordered pair of ASesj, together with a parameter
a € [0,1], such that for each ASand pathsP;, P; € P} with

P; =ii1...ix0 and P; = iji . .. jm0, there holds:
n—1
P; <; P; ifand only if wii, + o (Z Wi 1 + wino>
k=1
m—1
> wij, o <Z Wjpjeqr T+ wjm0> .
=1

The interpretation of this definition is as follows. Each aod
chooses edge weights for all possible outgoing lirikes; nodes
chooses a weight;; for each nodg. Next, nodei determines its
rankings by ordering all path®; = i1 ...4,0 in increasing or-
der according to their weighti;, + (3721 wiyiy,,, + Wino0),
whereq is a global parameter used to weight the tail of the path.
The parameted: allows us to compare two extreme points= 1,
corresponds to shortest path routing based on the matrixigé e
weightsw, while o = 0 corresponds to next-hop rankings. A nat-
ural question to ask is whether a routing system using edgghive
based rankings can be safe for intermediate values tfturns out
that theonly edge weight-based ranking class that can guarantee
safety (and safety under filtering), regardless of the wsighosen
by each provider, is the scheme definedhby 1; i.e., shortest path
routing.

Observation 3 A routing system with edge weight-based rankings
may be unstable for any where0 < « < 1.

Example 5Consider the routing system shown in Figure 6. If the
system is such that each node prefers the two-hop path tcethe d
tination, followed by the one-hop.€., direct) path, followed by
the three-hop path, then the system will be unstable bedsise
behavior will match Example 1. The routing system will be un-
stable if the following conditions are satisfied, for al= 1,2, 3:
Wiit1 + QWit1,0 < Wi,0 < Wi i4+1 + (Wig1,i+2 + wit2,0) (for
addition modula3). If a = 1, these inequalities cannot be simul-
taneously satisfied for any nonnegative choice of the eddghtve
vectorw, which is expected, since = 1 corresponds to shortest
path routing. On the other hand,0if< « < 1, then there are many
vectorsw that satisfy the inequalities above. For example, we can
ChOOSGlUm = woo = w30 = 1, and Ietw12 = W93 = W31 = I,

for anyz such that(l — ) /(1 + &) < < 1 — «. For this defini-
tion of w, all three inequalities above will be satisfied, and thus the
rankings of each node will lead to the same oscillation deedrin
Example 1. |

5. Dispute Wheels and Dispute Rings

Our goal is to study the classes of rankings for which theimgut
system is guaranteed to be safe under filtering. Gréffial. have
shown that checking whether a particular routing systenafis s
NP-hard [12]. To simplify our study of safety, we introducese-
ful concept developed by Griffiet al. [12], known as adispute
wheel Informally, a dispute wheel gives a listing of nodes, and tw
path choices per node, such that one path is always prefertbd
other. If a routing system oscillates, then it is possibledostruct
a dispute wheel whereby each node in the wheel selects its mor
preferred path (via the node in the clockwise directiony dgeless
preferred path. Griffiret al. showed that if a routing system with
no filtering does not have a dispute wheel, then it is safe.

The dispute wheel is a useful concept because it allows us-to a
alyze dynamic properties such as safety by simply lookinthat
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Figure 7: Relationships between safety and dispute rings ahwheels.
Previous work showed that a routing system with no dispute whel is
safe [12]. Section 5 presents all other relationships showin this figure.

Figure 8: lllustration of a dispute wheel. Dotted lines showpreferred

(indirect) paths to the destination. The nodes, . ..

,m are pivots.

rankings of each node in the routing system. In this secti@for-
mally define a dispute wheel and show the relationship offi@sf

routing model, which simulates messages being passed &etwe
nodes, to the model we use in this paper, which uses fairaactiv

tion sequences. This relationship allows us to study safegrms
of the routing model in this paper. We then introduce a spégie

of dispute wheel called dispute ringand show that, if any routing

system has a dispute ring, then it is not safe under filtefimally,
we relate dispute wheels to dispute rings and show thatusdtn
the presence of a dispute ring guarantees that a routingmsyist
not safe under filtering, it does not necessarily imply thabut-
ing system is not safe without filtering. Figure 7 summarittes
results of this section and how they relate to results froavipus

work [12].
5.1 Dispute Wheels and Safety

Definition 15 (Dispute wheel) Given a routing systen{N, <,

.,=<n,F1,...,Fn), adispute wheels a collection of distinct
nodesiy, ..., im, called pivots together with two sets of paths
P,...,P, andQ,...,Qmn, such that the following conditions

all hold (where we defing,,..1 = 1 for notational convenience):

1. PoeFy forallk=1,...,m;

2. Qi is a path fromiy toi,q forall k =1,...

» T

3. The pathP;, = i, Qyir1 Pry10 is feasiblej.e, Py, € F;,,

4, Pk i Py.

Thus, each nodg, prefers the pathi, Qrir+1 Pr+10 to the path

i, Pr0, as shown in Figure 8.

We now show that safety in the Simple Path Vector Protocol
(SPVP) defined by Griffiret al. [12] implies safety in our model,

which allows us to use dispute wheels to analyze safety.

Proposition 2 Given a routing system, a fair activation sequence,
and an initial path assignmer®,, let Py, P, ...

be the resulting

1320@ @ 321¢
_—
130 @ 320

2130
20
210

Figure 9: A routing system that is safe for any choice of filtes.

sequence of path assignments according to the dynamicsluissc
in Figure 3. Then there exists a sequence of messages intipeSi
Path Vector Protocol (SPVP) such that the same sequencettof pa
assignments is observed.

Thus, in particular, if a routing system is safe under SPYent
it is safe according to Definition 10.

Proof Sketch The key difference between SPVP and the dynam-
ics we have defined is that SPVPasynchronousi.e., at any time
step, messages may be in flight), so different nodes may h&ve d
ferent assumptions about the global path assignment atirmey t
SPVP isnondeterministiavith respect to the timing of messages;
the delay between a routing update at ngdend the receipt of the
new route advertisement from noglat nodei can be arbitrary. We
use this fact to construct, inductively, a sequence of ngessauch
that at timet, the current set of paths available to nadén SPVP
corresponds exactly t&:_;. Furthermore, we time the delivery
of routing updates to node in SPVP so that any updates that oc-
curred since the last timg was activated arrive exactly at the start
of time stept. In SPVP, this will initiate a routing update at node
which corresponds exactly to the activation:pfn our model (see
Figure 3).

Thus, the sequence of path assignments seen in this reaiizat
of SPVP matches the sequence of path assignments seen ip-our d
namics. We conclude that if SPVP is guaranteed to be saféador t
given routing systemi.g., if eventually no further routing updates
occur, regardless of the initial path assignment), thenrdliing

system is safe according to Definition 10 as well. |
Corollary 1 If a routing system (N, <1,...,=<n,
Fi,...,Fn) has no dispute wheel, then it is safe under fil-

tering (and hence safe).

Proof Choose subset$; C F;. Then, any dispute wheel for
the routing systent = (N, <1,.. =<, F ]-'N) is also a
dispute wheel for the original routing systeth = (N, <1,...,
<n~,F1,...,Fn). Thus, the result follows from Proposition 2 and
the results of [12]. |

If no dispute wheel exists, the routing system is safe untter-fi
ing, but, unfortunately, this condition is not a necessanydition
for safety, and thus not much can be said about a system that do
have a dispute wheel. Furthermore, there exist routinggysthat
have a dispute wheel but which are safe under filtering.

Observation 4 The existence of a dispute wheel dnemply that
the routing system is unsafe, nor that the routing systertisafe
under filtering.



Example 6See Figure 9. The first two most preferred paths in each
node’s ranking form a dispute wheel, but the system is sdfe: t

system converges tB = (10, 20, 30). Furthermoreno combina-

tion of filters can create an oscillatiorThe two-hop paths are not

part of the stable path assignment, so filtering those pabab
effect on the protocol dynamics. Filtering a three-hop patiuld
simply result in a node selecting the direct path to the dasbn,
and the node would never deviate from that path. If one dpattt
is filtered, then the other two nodes will take direct paththeodes-
tination and the node whose direct path is filtered will takemost
preferred three-hop path. If two direct paths are filterbdntP is
simply a chain to the destination: the node that has the tdiath
takes it, and the other two nodes will take two and three-raihg
|

5.2 Dispute Rings and Safety

ode | Ranking

160 > 1240
240 > 2350
350 > 3160
43160 > 40
51240 > 50
62350 > 60

OO wWNRZ

(a) Routing system (b) Dispute wheel

Figure 10: System that (1) has no dispute ring and (2) is not $a.

Path Assignment

Act. 1 2 3 4 5 6
In this section, we extend the dispute wheel notion to urideds — | @1240) (240 B50) @0 G0y 60)
the relationship between ranking expressiveness andysafeter 5 (1240) (240)  (350) (40) (512400  (60)
o ; . . ; . 1 (160) (240) (350) (40) (51240) (60)
filtering. We define a relationship between rankings calldidpute 3 (160) (240) (3160) 40) (51240) 60)
ring, a special case of a dispute wheel where each node appears ata (160) (240) (3160) (43160) (51240) (60)
most once. The dispute ring is a useful concept becauseitslis 5 (160) (240) (3160) (43160) (50) (60)
to prove anecessaryondition for safety under filtering. 2 8 g 8; (2(23‘1%00)) 8 g 8; (&gllg%)) ((%%)) ((%%))
6 (160) (23500 (350) (43160) (50) (62350)
_ . . . .y . 4 (160) (2350) (350) (40) (50) (62350)
Definition 16 (Dispute ring) A dispute ringis a dispute wheel—a 2 (160) (240) (350) (40) (50) (62350)
collection of nodes,, . .., i, and pathsP;, ..., Py, Q1,...,Qm El) ggigg ((224;‘%)) ((3355%)) (&%)) (5 1(52> 2)0) (é6223?:550§>)
satisfying Definition 15—such that > 3, and no node in the e 1240) (240) (350) 0) (51240)  (60)

routing system appears more than once in the wheel.

Proposition 3 If a routing system has a dispute ring, then it is not

safe under filtering.

Proof. Assume that a routing system has a dispute ring, defined

by i1,...,im, and path€Q1,...,Qm, Pi,...,Pn. Then, con-
struct filters such thaf; containsonly the paths in that dispute
ring. Specifically,F; contains the following paths frof}" (where
we definei+1 = i1). (1) If 7 is not in the dispute ring, then
Fi = 0. (2) If i is a pivot node on the dispute ring, say= i,
thenF; contains exactly two pathd?;, andi,Qxik+1 Pr+10. (3)
If 4 is not a pivot node, but € Q) for somek, then we can write
Qr = i1QriQ%ir+1. In this caseF; consists of the single path
iQ%ir41Pei10. (4) If i is not a pivot node, but € P, for some
k, then we can writeéP, = ikPklz'Pf.O. In this case,F; consists

of the single pathi P?0. Since each node appears at most once on

the dispute ring, the preceding definition uniquely defifiefor all
nodesi.
There exists at least one consistent path assignnnt

such that some pivot nodé._; uses its most preferred path,

1r—1Qr—11%Pr0, every other pivot node; uses path; P;0, and

every other non-pivot nodeuses its only available path consistent

with this assignment. Then, the following activation setpeewill
result in an oscillation:

1. Activate node,. Nodei, then switches to its more preferred

path,ix Qrir+1Pr+10.

2. Activate nodes alon@;_; in reverse order, from the node
immediately precedingy, to ix—1. All nodes alongQy_1
switch to the empty patha.

3. Activate nodé_1. The pathiy_1 Qx—17x Px0 is now incon-
sistent, sa,_; must switch to the patfy,_; Pi—10.

4. Return to Step 1 with replaced byk + 1, and iterate again.

Figure 11: Activation sequence for unsafe system from Figu 10.

By the fourth step of the iteration above, the new path agség is
“isomorphic” to the initial configuration: now nodg is using the
pathi,Qrir+1Pr+10, and every other pivot nodg is using path
1; P;0. Thus, as this iteration repeats, the dynamics will ultehat
reach node; once again with the original path assignment. Note
that all paths in this activation sequence are guarantebd &vail-
able and consistent, by the definitionBf. To make this activation
sequence fair, we must also activate the nodes that are FpLiQ;
for any in the dispute ring; and the non-pivot nodesinfor all

1 in the dispute ring. The nodes that are notinu Q; for any
have only the path available, and each non-pivot nodef (for
all 7) has only one path to the destination available. Therefhese
nodes will never change paths, and do not affect the osoitlail

We emphasize that, for simplicity, we reduced the set ofr§ijte
F;, to include only the set of paths that are involved in an escil
lation. We note that there will typically be more permissgets
F; that will also result in oscillation, because the disputegris
present in the underlying set of rankings. Our intent is ghhght
the most basic case of filtering that can cause an oscillagjioan
the existence of a dispute ring.

Despite the fact that systems that are safe under filterenguzar-
anteed not to have a dispute ring, testing for a dispute sngpt
sufficient to guarantee that the routing system is safe, Usecaf
the following observation

Observation 5 Routing systems that have a dispute wheel but do
not have a dispute ring may not be safe.

Example 7 Consider the routing system described by Figure 10(a)
and the corresponding dispute wheel in Figure 10(b). Suppos



that nodesl, 2, and3 prefer two-hop paths over three-hop paths,
and the only paths available to nodes are those depictedein th
figure. This system is not safe; for example, suppdde =
(1240, 240, 350, 40, 50, 60). The system then oscillates as shown
in Figure 11. However, the system has no dispute ring; inqaair,

the dispute wheel depicted in Figure 10(b) cannot be redteed
dispute ring. |

6. Autonomy and Safety

In this section, we determine necessary and sufficient @ins
on the allowable classes of rankings, such that if each AS au-
tonomously sets its ranking while filtering is unrestrictéte pro-
tocol is guaranteed to be safe. We do so by characterizinghwha
routing system where rankings are independently specifiedhbh
AS can induce either a dispute ring or a dispute wheel.

Any protocol’s configurable parameters implicitly congtrghe
rankings ASes can express. For example, in BGP, the setiofgmio
parameters is rich enough to allow providers to expresadaliyg
any possible ranking over paths. In Section 6.1, we axiarathyi
formulate two properties that should be satisfied by anyooait
that respects autonomysermutation invarianceandscale invari-
ance The first requires the rankings allowed by the protocol to be
independent of node labeling, while the second requiresltbeed
rankings to scale gracefully as nodes are added to the sy$tem
abstract protocols satisfying these two conditions udlirgrtotion
of anautonomous ranking constrai(ARC) function; such a func-
tion takes the ranking of a single AS as input, and acceptshat
ranking is allowed by the protocol. Observe thal protocol that
respects the ability of ASes to autonomously choose raskiag
be represented by a corresponding ARC function.

In Section 6.2, we give two examples of such functions: the
shortest hop count ARC function (which only accepts ranking
where shorter paths are preferred to longer paths), ancettichop
ARC function (which only accepts next hop rankings). We tden
termine the class of ARC functions such that, as long as eadé n
independently chooses an acceptable ranking, the regglibtal
routing system will be safe under filtering. In Section 6.8, sthow
that the only ARC functions that are safe under filtering azarly
equivalent to the shortest hop count ARC function.

6.1 ARC Functions

In this section, we define aautonomous ranking constraint
(ARC) function, which serves as an abstraction of the patec
constraints on allowed rankings over routes. We start bynihefi
a local ranking constraint (RC) function, which takes asuirpe
ranking of a single AS, < and determines whether that ranking
is allowable.

Definition 17 (Local RC function) Given N nodes, docal rank-
ing constraint (RC) functiomr(<;) takes as input the ranking of a
single ASi over all paths inP;", and returns “accept” if<; is al-
lowed byr, and returns “reject” otherwise. Ifr(<;) = “accept”,

we will say that<; is w-accepted. If we are given a routing system
(N, <1,...,<n,F1,...,Fn) where eachx; is w-accepted, we
will say the routing system is-accepted.

Because we are restricting attention to protocols thateagpe
ability of ASes to choose rankings autonomously, a first ¢ d
that must be satisfied is that constraints on rankings sHmeiltb-
cal: that is, an AS should not face constraints on allowadhle-
ings due to the rankings chosen by other ASes. For this relson
cal RC functions act only on the ranking of a single AS. More gen-

erally, protocols might place system-wide constraintstenvector
of rankings chosen by all ASes; such protocols should besrepr
sented by “global” RC functions. Of course, such protocasdt
respect autonomy, and so we do not consider them here.

We now define two natural conditions any local RC functiort tha
preserves autonomy should satisfy. First, the local RCtian's
conditions on rankings should provide consistent ansveedsffer-
ent ASes, regardless of thebelingof the ASes. That is, for the lo-
cal RC function to preserve uniformity, each AS should bgesttb
to the same constraints on routing policies, and those @ntt
should not depend on the particular assignment of AS nuntbers
ASes. For example, suppose the routing system consistgesf th
ASes, and AS has an accepted ranking where it prefe230 over
120, and 120 over 10. Then we expect the same ranking should
be accepted, even if the labels of nodesmmenuted For example,
suppose we permute the node labels that 2,2 — 3, and3 — 1.
Then node2 should also have an accepted ranking where it prefers
2310 over230, and230 over20 (because310, 230, and20 are the
new paths that result after applying the permutation280, 120,
and 10, respectively). If this property were not satisfied, thea th
set of accepted rankings determined by a local RC functiomdvo
depend on the global assignment of AS numbers to nodes, not on
the characteristics of the individual rankings themselvaf call
this notionpermutation invarianceto define it precisely, we must
proceed through a sequence of definitions, starting paitn per-
mutation

Definition 18 (Path permutation) GivenN nodes, let be a per-
mutation of the nodes, ..., N. Thens induces apath permuta-
tion on any pathP = 4i1is...imj fromi to j, yielding a new
patho(P) = o(i)o(i1)o(i2) ... o(im)o () fromo(i) too(j). We
always definer(0) = 0.

Definition 19 (Ranking permutation) GivenN nodes, let be a
permutation of the nodek . .., N. Thenc induces aanking per-
mutationon a ranking~; for nodei over the paths irP;", yield-
ing a new rankings(<;) over the paths inPj\Ei), as follows: If
Pi,P, € PN, and Pi <; P, theno(Pi)o(=<:)o(P2) (where
o(FP;) is the path permutation of path; undero).

Note that a permutation does not modify the routing systeyn an
substantive way, except telabelthe nodes, and to relabel the paths
and rankings and in a way that is consistent with the relabedf
nodes.

Definition 20 (Permutation invariance) A local RC functionr is
permutation invarianf, given N and a ranking<; for an ASi over
all paths inP}", the relation<; is 7-accepted if and only & (<;)
is m-accepted, for any permutatianof 1,..., N.

Second, a local RC function should specify conditions faepe
tance or rejection of rankings that “scale” appropriatelighvthe
number of nodes in the system; we call this propedsle invari-
ance Suppose, for example, that a local RC function accepts a
ranking <; over P}, whenN nodes are in the system. Now sup-
pose that we add nodes to the system, so the total number e§nod
is N > N. As additional nodes are added to the system, addi-
tional paths become available as well, and each riodest specify

its rankings over the larger s . Informally, scale invariance
of the local RC function requires thashould be able to “extend”
the ranking~<; to an accepted ranking ové?}", without having

to modify its existing ranking oveP," ; otherwise, the properties



of allowed rankings would depend on the number of nodes in the
global system.
To formalize this concept, we first define a subranking.

Definition 21 (Subranking) Given N nodes, let<; be a ranking
for ASi over all paths inP. GivenN > N, let <, be a ranking

for ASi over all paths inP{(’. Note thatP¥ c Pf\’ We say
that <, is a subrankingof <; if P; <; P, implies P, <; P, for all
P, P ePl.

We now define scale invariance.

Definition 22 (Scale invariance) A local RC functionr is scale in-
variantif the following condition holds: given amy-accepted rank-
ing < for ASi over P}, and given anyN > N, there exists at

least oner-accepted ranking<; overPZN that has<; as a sub-
ranking.

Permutation invariance guarantees that relabeling nonkes bt
affect allowed rankings; scale invariance ensures that egethe
set of nodes in the network increases, the rankings overqugy
existing paths should remain valid. Local RC functions theit
isfy both permutation invariance and scale invarianceespond to
protocols that respect the ability of ASes to autonomoublyose
rankings; we call such functiorsutonomous ranking constraint
functions

Definition 23 (ARC function) A local RC function is anau-
tonomous ranking constraint (ARC) functidghit is both permu-
tation invariant and scale invariant.

We want to derive the conditions under which protocols ag-gu
anteed to be safe under filtering. Given that we use an ARGiamc
as an abstraction of the constraints placed by a protoca@rkings,
we would thus like to characterize ARC functions that caruesns
safety under filtering of the entire routing system (a glomalp-
erty). For this reason, we extend the definition of “safetgam
filtering” to cover local RC functions.

Definition 24 Let 7 be a local RC function. We say thatis safe
under filteringif all w-accepted routing systems are safe under fil-
tering.

6.2 Examples of ARC Functions

We now present two simple examples of ARC functions: the
shortest hop count ARC function, which is guaranteed to e sa
but is not expressive; and the next hop ARC function, whiaxis
pressive, but not safe.

Example 80ur first example is thehortest hop count RC functipn
m°"¢. Given the number of node¥, the RC functionm*"° ac-
cepts a ranking<; for node: if and only if the relation<, strictly
prefers shorter paths (in terms of hop count) over longes.oRer-
mally, it accepts<;, if, for any two pathsP;, P; € P} such that
length(P;) < length(P;), P; =; P;. Ties may be broken arbitrar-
ily.

It is not hard to verify thatr*" is an ARC function. To check
permutation invariance, note that+; is allowed for node, then
of course for any permutatios, the rankingo(<;) will also be
allowed for nodes (i), aso(<;) will also prefer shorter paths to
longer paths. Scale invariance is natural: given any ssohtep
count ranking<; over P{¥, and givenN > N, there obviously

exists at least one shortest hop count ranking @@&rthat has<;
as a subranking. |

%" forces all providers to use shortest AS path length, effec-
tively precluding each AS from having any policy expressags
in choosing rankings (other than when breaking ties). A niiese
ible set of rankings is allowed by theext hop RC functionf the
next example.

Example 9 The next hop RC functignr™”, accepts a ranking;
for node: if and only if <; satisfies Equation (1) in Section 4.1;
that is, if <; is a next hop ranking.

7™ is clearly permutation invariant: ik; is a next hop rank-
ing for nodes, then clearlyo(<;) is a next hop ranking for node
o (7). Furthermore, note that any next hop rankingis determined
entirely by the rankings of nodeover each possible next hop, to-
gether with tiebreaking choices among routes with the sagxé n
hop. Thus, forN > N, <; can be extended to a next hop ranking

over P, by extending node’s rankings over each possible next
hop, and determining tiebreaking rules for any routes wétkt op
N+1,...,N. We conclude that™" is scale invariant as well, and
thus itis an ARC function.

=™ grants greater flexibility in choosing routing policies tha
under the shortest hop count RC functiari”¢, albeit at some cost.
With 7", each AS; will choose a next hop ranking; without
any global constraints on the composite vector of next hop rank-
ings(<1,...,<x~) chosen by the nodes. We have shown earlier in
Section 4.1 that there exist configurations of next hop raggihat
may not be stable or safe under filtering; thus, the ARC fancti
7™ can lead to a lack of safety. |

Next, we use dispute rings and dispute wheels to charaetiiz
class of ARC functions that are safe under filtering. We witiye
that this class is closely related to the ARC functiotte.

6.3 Impossibility Results

We prove two main results in this section. Informally, thetfie-
sult can be stated as follows: suppose we are given an AR@danc
and an accepted ranking such that sont®p path idess preferred
(i.e., ranked lower) than another path of length at least 2 hops.
Then, we can construct an accepted routing system with aitéisp
ring; i.e,, one that is not safe under filtering. The second result
states that if some-hop path idess preferredhan another path of
length at least. 4+ 1 hops, then there exists a routing system with a
dispute wheel (though not necessarily a dispute ring). Mwtethis
result is weaker than our first result, because a dispute vdoes
not necessarily imply that the system is not safe underifilger

We interpret these results as follows: if we are searchingRC
functions that are safe under filtering, we are very neasyricted
to considering only the shortest hop count ARC function abse
all paths ofn hopsmust be more preferrethan paths of at least
n + 2 hops to guarantee safety under filtering, and all paths of
hops must be more preferred than paths of at least1 hops to
prevent dispute wheels.

Our first lemma, which is crucial to proving both of our result
uses permutation invariance to construct a dispute wheet f
single node’s rankings. We use a permutation to “replicptetes
of the dispute wheel until the entire wheel is completed.

To state the lemma, we will require the definition pdriod of
a node with respect to a permutation, as well as the period of a
permutation. Given a permutatienon the nodes, ..., N, leto®
denote the permutation that results wheis appliedk times;e.g,
a%(j) = o(a(4)), wheres? is defined to be.



Definition 25 (Period) Given a permutations on the nodes
1,..., N, we define theeriod of i under o as period, (o)
min{k > 1: o%(i) =1}.

Thus, the period ofis the minimum number of applicationsof
required to return tai.

Definition 26 (Permutation period) Given a permutations on
the nodesl, ..., N, we define theeriod of the permutation as
period(c) = min{k > 1: ¢*(4) = i for all }.

Thus, period (o) is the minimum number of applications &f
required to recover the original node labeling, and can bmpoted
as the least common multiple périod, (o), for1 < i < N.

The following result establishes the conditions under Wwhie
can apply a permutation to=&accepted ranking to obtain a dis-
pute wheel. We use this lemma as a building block for both ef th
theorems in this section.

Lemma 1l Letw be an ARC function. Suppose there exists a node
i with a ranking <; over P}, two patthi,Pi e PN, and a
permutations on 1, ..., N such that: (1)<; is w-accepted; (2)
Ri =i P;; (3) period,(c) = period(c); and (4) there exists a
pathQ; fromi to o (i) such that:
Ri = iQio(i)o(P)0. 2)

Then there exists a-accepted routing system with a dispute wheel.

This dispute wheel is defined by pivot nodes.. ., %, and
pathsPi,..., Py and Qq,. .., Qm, Wherem = period(o), and
where fork = 1,...,m, we havei, = o*~1(i), P, = c* " 1(P,),

and Q. = o*1(Qy).

Proof Sketch Details are in the technical report [5]. The key idea
of the proof is that, becaugeeriod, (o) = period(c), we can re-
peatedly applys to the paths); and P; and apply permutation
invariance to construct a-accepted routing system with a dispute
wheel. |

We then use scale invariance and Lemma 1. We add nodes to
the system, and use them to build a permutatiosatisfying the
conditions of Lemma 1 (in particular, so th&f is mapped into the
tail of R;}). Furthermore, we show that becaudeand R, share no
nodes in common, the dispute wheel of Lemma 1 is in fact a téspu
ring. This completes the proof, since by Proposition 3 tisalteng
routing system is not safe under filtering.

[ |

The preceding theorem suggests that ARC functions thabéee s
under filtering are closely related to the shortest hop c&R€
function, because no rankings can be accepted whédrap paths
are less preferred than ¢ k)-hop paths, fok > 2. The next theo-
rem draws this relationship even closer, by proving thatgtlesists
a dispute wheel if an ARC function accepts any ranking where a
n-hop path is less preferred than an{ 1)-hop path.

Theorem 2 Letnw be an ARC function. Suppose there exists a node
i with m-accepted ranking<;, and two pathsk;, P; € PN such
that length(R;) = length(P;) + 1 and R; ~; P;. Then there
exists ar-accepted routing system with a dispute wheel.

Proof SketchDetails are in the technical report [5]. Our approach is
to map the pattP; into the “tail” of the pathR;, which partially de-
fines a permutatioa. We then show how to add nodes to the system
and complete the permutatienso thatperiod, (o) = period(o).

We then apply Lemma 1 to conclude there existsaccepted rout-
ing system with a dispute wheel. [ |

The preceding results should not be interpreted as suggehbtt
we cannot find a routing system that is safe under filteringgreh
nodes preferr + k)-hop paths oven-hop paths. Indeed, from
Example 6, there are routing systems where nodes psefep
paths overl-hop paths, and yet the system is safe under filtering.
However, checking whether such systems are safe undemifgyter
requires global verification; the theorems we have presdesiig-
gest that safety under filtering cannot be guaranteed thréaaal

The preceding lemma reduces the search for a dispute wheelverification alone, if some nodes are allowed to prefes-(k)-hop

to a search for a permutation andraaccepted ranking with the
stated properties. Observe from Equation (2) that the permu
tion o maps the pathP; into the “tail” of the pathR;; in apply-
ing Lemma 1, we will construct a partial permutation by magpi
a pathp; into the “tail” of R; as in (2), and then we will complete
the permutation by adding nodes to the system if necessahaso
period, (o) = period(c). We use this approach to prove two the-
orems; the first states that if an ARC function accepts at leaes
ranking that prefers an-hop path less than a path of at least 2
hops, then the ARC function is not safe under filtering.

Theorem 1 Let7 be an ARC function. Suppose there exists a node
i with 7-accepted ranking<;, and two pathsik;, P; € PYN such
thatlength(R;) > length(FP;) + 1 andR; >; P;. Then,r is not
safe under filtering.

Proof Sketch Details are in the technical report [5]. The proof
relies on Lemma 1 to build a dispute wheel. First, using sicale
variance of the ARC function, we show that the s}ated cooakti
of the theorem ensure that there exist two paihsP] such that:
length(R;) > length(P!) + 1; R} is more preferred thaf®/ for
somer-accepted ranking; an#;, and P have no nodes in com-
mon, other thar and0.

paths ovemn-hop paths.

Furthermore, the two results in this section highlight timpor-
tance of dispute rings. Theorem 1 gives the strong resuftatha
ARC function that allows somen(+ k)-hop path to be more pre-
ferred than am-hop path cannot guarantee safety under filtering,
if k > 2. Theorem 2 only guarantees the existence of a dispute
wheel if an ARC function that allows some ¢ 1)-hop path to be
more preferred than an-hop path—we cannot draw conclusions
regarding the stability or safety of a routing system on thsidof
the existence of a dispute wheel (see Example 6).

7. Conclusion

This paper explored the fundamental tradeoff between the ex
pressiveness of rankings and routing safety, presumingeteh
AS retains complete autonomy and filtering expressivené&ss.
make three main contributions. First, we show that next-laoyx-
ings are not safe; we also observe that although rankingsllzasa
globally consistent weighting of paths are safe under filtgreven
minor generalizations of the weighting function comproergafety.
Second, we define @ispute ringand show that any routing system
that has a dispute ring is not safe under filtering. Third, hans
that, providing for complete autonomy and filtering expressess,
the class of allowable rankings that guarantee safety écfely



ranking based on (weighted) shortest paths. We also pexbém
first study of the effects of filtering on stability.

In light these results, a natural question to ask is whetteyr are
positive or negative. In one sense, our results are gringusecthey
suggest that if BGP remains in its current form and each Ag@nset
complete autonomy and filtering expressiveness, the only re-
alistic scenario for the foreseeable future), then theingugystem
cannot be guaranteed to be safe unless each AS constraimskits
ings over available paths to those that are consistent \uibhtesst
hop count (or, alternatively, preferences that are basedwsistent
edge weights).

On the other hand, our results suggest several clear dinsdtbr
designing a policy-based routing protocol that is guaresht® be
safe. Although we presented the ARC function as a proof tech-
nigue, such a function could be implemented in practice $trict
the rankings that operators specify in operational netaorie
foresee two possibilities: (1) the routing protocol rensaas it is
today, and the constraints derived in Theorems 1 and 2 acketie
by a tool that statically detects configuration fauksg( rcc [3]);
or (2) the routing protocol is modified to prevent operatorsf
expressing rankings that violate these constraints in thefiace.
Although we have not yet fully evaluated the merits of each ap
proach in this work, we now briefly speculate on advantages an
disadvantages of each approach.

Enforcing the ranking constraints in a static checker waeld
quire no changes to the existing routing protocols and cardigpn
languages. Unfortunately, the results in Theorems 1 andy2ooo-
vide global guarantees dveryAS abides by the constraints: as a
result, there may be little incentive for one AS to overly swain
its policies if other ASes do not abide by the same conssdamd
creating the potential for unsafe routing in the process).

Implementing the ranking constraints by restricting thet@col
“knobs” requires wholesale changes to both the configurdtio-
guage and the routing protocol, but it would provide absogutar-
antees for safety while still preserving the autonomy ofhea8.
Our results in Section 4.2 suggest one possible directlmretwe
show that routing using preferences derived from edge wiigh
guaranteed to be stable. Suppose each AS ranks paths based
the sum of edge weights to the destination and adjusts veeaht
its incident outgoing edges to neighboring ASes. Rankingslav
then be derived from the total path cost, but an AS might il
tain enough flexibility to control the next-hop AS en routette
destination. Such an approach could ensure that the ptawco
safe on short timescales, while allowing “policy disputés”oc-
cur on longer timescales, out-of-band from the routingguot. Of
course, we must still explore whether this apparently mestric-
tive language could still implement the policies that oparswant
to express. Furthermore, a more restrictive policy languaguld
guarantee safety, but would likely cause routing to odeillen a
slower timescale as operators observe the routing protocwerg-
ing to undesirable paths. It is our position that this desigaision
is exactly the right one: the routing protoaiouldconverge on a
fast timescale and accurately reflect network topology|entolicy
conflicts should be resolved on slower, “human” timescales.
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