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Why do Connection Migration?

• Mobility

– End hosts may change network attachment points

• Load Balancing / Fault Tolerance

– Servers may want to off-load long-lived flows

• Redirection reduces to Migration

• Anycasting

– Rebind a connection to a unicast address
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Previous Approaches

• Connection-ID schemes

– Constant overhead oneverypacket

– Lots of security and DoS issues

• Mobility Schemes

– Mobile-IP

∗ Completely transparent to end hosts

∗ Requires ahome agent

∗ Introduces routing anomalies (triangle routing)

– EID schemes

∗ Yet another level of indirection
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Our Approach

• Migrate TCBs from established connections

– Special SYN packets include aMigrate option

∗ Migrate SYNs do not establish new connections,

but migrate previously-established ones

∗ Established connections are referenced by atoken

– Maintain all old state (sequence space, options, etc.)

– Tokens negotiated during connection establishment

• No need to anticipate re-addressing

– New (continuing) connections can be from anywhere

– Special RST handling for address reassignment
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Benefits

• No per-packet overhead

• Minimal changes to TCP state machine

• No changes to TCP semantics

– An established connection is migrateable

– End-host TCP options work

∗ SACK, FACK, Timestamps, etc.

– Network extensions work

∗ Snoop, NATs, etc.
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TCP Connection Migration

SYN 531521:531521(0)〈migrateOk km〉, 〈timestamp Tm〉, . . .

SYN 083521:083521(0
)

ack 531522, 〈migrateOk kf 〉, 〈timestamp Tf 〉, . . .

ack 083522

545431:545967(5
36)

ack 092398

SYN 092397:092397(0)〈migrate T ,R〉

SYN 545967:545967(0
)

ack 092398

ack 545968
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TCP State Diagram Modifications
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A Migrate Connection Trace
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A SACK Trace with Losses
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Securing the Migration

• Migrate requests are as secure as the sequence space

• No need for further security with IPsec

• Without IPsec, could be sniffed and spoofed

– The case for TCP today without ingress filtering!

– Ingress filtering doesn’t help with Migrate requests

– Optionally secure requests with a secret key,K

– Negotiate the secret key in-band with ECDH

– Requests have two parts to avoid DoS attacks

∗ A pre-computablesecret nonce

∗ An unforgeable migration request
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TCP Migrate option

Kind: 16 Length = 19 ReqNo

Token

Token (cont.)

Request

Request (cont.)

Token = SHA1(Ni, Nj ,K)

Request = SHA1(Ni, Nj ,K, SeqNo,ReqNo)
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TCP Migrate-Permitted option

Kind: 15 Length = 3/20 Curve Name ECDH PK

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)
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