
TCP Connection Migration

Alex C. Snoeren

and Hari Balakrishnan

MIT Lab for Computer Science

June 26, 2000

http://nms.lcs.mit.edu/projects/migrate



Why do Connection Migration?

• Mobility

– End hosts may change network attachment points

• Load Balancing / Fault Tolerance

– Servers may want to off-load long-lived flows

• Redirection reduces to Migration

• Anycasting

– Rebind a connection to a unicast address

TCP Connection Migration Slide 2



Previous Approaches

• Connection-ID schemes

– Constant overhead oneverypacket

– Lots of security and DoS issues

• Mobility Schemes

– Mobile-IP

∗ Completely transparent to end hosts

∗ Requires ahome agent

∗ Introduces routing anomalies (triangle routing)

– EID schemes

∗ Yet another level of indirection

TCP Connection Migration Slide 3



Our Approach

• Migrate TCBs from established connections

– Special SYN packets include aMigrate option

∗ Migrate SYNs do not establish new connections,

but migrate previously-established ones

∗ Established connections are referenced by atoken

– Maintain all old state (sequence space, options, etc.)

– Tokens negotiated during connection establishment

• No need to anticipate re-addressing

– New (continuing) connections can be from anywhere

– Special RST handling for address reassignment

TCP Connection Migration Slide 4



Benefits

• No per-packet overhead

• Minimal changes to TCP state machine

• No changes to TCP semantics

– An established connection is migrateable

– End-host TCP options work

∗ SACK, FACK, Timestamps, etc.

– Network extensions work

∗ Snoop, NATs, etc.

TCP Connection Migration Slide 5



TCP Connection Migration

SYN 531521:531521(0)〈migrateOk km〉, 〈timestamp Tm〉, . . .

SYN 083521:083521(0
)

ack 531522, 〈migrateOk kf 〉, 〈timestamp Tf 〉, . . .

ack 083522

545431:545967(5
36)

ack 092398

SYN 092397:092397(0)〈migrate T ,R〉

SYN 545967:545967(0
)

ack 092398

ack 545968

mobile fixed

1

2

3

4

5

6

7

TCP Connection Migration Slide 6



TCP State Diagram Modifications
CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

MIGRATE WAIT
2MSL timeout

ap
pl

:
cl

os
e

or
ti
m

eo
ut

appl: passive open
send: 〈nothing〉 appl: active

open

send: SY
N

recv: SYN
send: SYN, ACK

recv: ACK

rec
v:S

YN,A
CK;se

nd
:A

CK

appl: send
data

send: SYNrec
v:

RST

rec
v:

SY
N; s

en
d:

SY
N, A

CK

recv: SYN 〈migrate
T ,R〉

send: SYN, ACK
ap

pl:
m
ig
ra
te

sen
d:

SY
N
〈migr

ate
T ,R

〉

rec
v:

RST

re
cv

:S
Y

N
〈m

ig
ra

te
T

,R
〉

se
nd

:
SY

N
,A

C
K

TCP Connection Migration Slide 7



A Migrate Connection Trace

70000

72000

74000

76000

78000

80000

82000

84000

86000

0 2 4 6 8 10 12

S
eq

ue
nc

e 
N

um
be

r 
(b

yt
es

)

Time (secs)

Before: Data
ACKs

Host Migration
After: Data

ACKs

TCP Connection Migration Slide 8



A SACK Trace with Losses

68000

70000

72000

74000

76000

78000

80000

82000

84000

22 24 26 28 30 32 34

S
eq

ue
nc

e 
N

um
be

r 
(b

yt
es

)

Time (secs)

Before: Data
ACKs

Host Migration
After: Data

ACKs

TCP Connection Migration Slide 9



Securing the Migration

• Migrate requests are as secure as the sequence space

• No need for further security with IPsec

• Without IPsec, could be sniffed and spoofed

– The case for TCP today without ingress filtering!

– Ingress filtering doesn’t help with Migrate requests

– Optionally secure requests with a secret key,K

– Negotiate the secret key in-band with ECDH

– Requests have two parts to avoid DoS attacks

∗ A pre-computablesecret nonce

∗ An unforgeable migration request

TCP Connection Migration Slide 10



TCP Migrate option

Kind: 16 Length = 19 ReqNo

Token

Token (cont.)

Request

Request (cont.)

Token = SHA1(Ni, Nj ,K)

Request = SHA1(Ni, Nj ,K, SeqNo,ReqNo)

TCP Connection Migration Slide 11



TCP Migrate-Permitted option

Kind: 15 Length = 3/20 Curve Name ECDH PK

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

TCP Connection Migration Slide 12


